

the framework of: Probabilistic Functional Modes

part 1

Three lectures on FSL tool Probabilistic Functional Modes

- Description of PFM framework and its key features.
- PFM Network Matrices, comparison to ICA, and interpretability of functional connectivity.
- PFMs for big data and prediction of individualistic traits.

Modes of brain function

- Functional mode -> a set of brain regions that share a common time course.
- Can be estimated from resting-state data (i.e., resting-state networks or RSNs) or task data.

Functional modes vary across individuals

Inter-subject variability of networks
 topographies and functional
 connectivity is meaningfully predictive
 of personalised traits and pathology,
 like a diagnostic assay for the brain.

Current standard technique: Group ICA + Dual Regression

- Subject-specific mode estimation typically follows two separate steps:
 - 1. Group-level ICA
 - 2. Group-ICA mapped onto subject fMRI timeseries via multiple regressions
- Explicit subject modelling: No
- Directionality: Unidirectional
- Limited ability for capturing cross-individual variability

➤ Recent advances include estimating modes simultaneously and hierarchically for the population and individuals

Probabilistic Functional Modes (PFMs)

- Simultaneous modelling of population and individuals
 - 1. Group-level modes used for top-down regularisation of individuals
 - 2. Individual-specific modes used for bottomup regularisation of the group

- Explicit subject modelling: Yes
- Directionality: Bidirectional
- Aim is to improve cross-individual variability modelling

Based on Harrison et al., 2015

How does the model work?

Reconstructing functional modes using Matrix Factorisation

• FMRI data $(N_{Voxel} \times N_{Time})$ is factorised into a set of functional modes. Modes are characterised by:

- 1. Spatial Maps (N_{Voxel} x N_{Mode})
 - Spatial configuration or Topography
- 2. Time course (N_{Mode} x N_{Time})
 - Activity over time
- 3. Functional Connectivity ($N_{\text{mode}} \times N_{\text{mode}}$)
 - Temporal correlation between modes (NetMat)

Subject-specific decomposition in PFMs

- Let us assume that we have fMRI data from a subject 's' and recording session 'r'.
- We do the following matrix factorisation for this subject:

$$D = P H A + \varepsilon \tag{1}$$

- Where: D -> preprocessed data;
- P -> spatial maps of modes;
- A -> time courses of modes;
- H -> amplitudes of mode activity over time;
- ε -> residuals;
- α -> partial temporal correlation (i.e., connectivity) between timeseries of A.

Probabilistic formulation

- We use a data-driven probabilistic approach to approximate a solution to Equation 1.
- Our aim is to estimate a probability distribution for each of the model's spatial and temporal variables, for each subject and the group.
 - For this purpose, we define what types of distributions we expect for each model element.
 - For example, distributions for voxel-wise spatial maps are set to be Gaussian.
 - Model should be able to estimate relevant parameters (e.g. mean and variance) to characterise these distributions to explain the observed data.

Variational Bayesian solution to probabilistic framework

- To achieve this optimisation goal, we use Bayesian inference:
 - 1. Assume that there are "true" distributions in the data, which we do not know.
 - 2. We start with an initial estimate (prior).
 - 3. We optimise the distribution using a technique called variational Bayes (VB).
 - 4. Without knowing the true distribution, with VB inference we can derive and optimise a lower bound for the marginal likelihood of the data given the model (see Harrison et al., 2015 for technical details of inference).

Question: Where do we get the prior distributions from?

Hierarchical solution to the probabilistic Bayesian framework

- Therefore, the model will:
 - 1. Compute an initial set of group-level modes
 - 2. Use priors from group-level modelling to regularise subject-specific estimations.
 - 3. Use accumulated posterior evidence across subject PFMs to update the group
 - 4. Iterate steps 2&3 until convergence

Hierarchical solution to probabilistic framework

- To define the priors and optimise the subject-specific networks, the model works around these ideas:
 - 1. The general spatial layout of the modes correspond across individuals, e.g. default mode network occupies roughly the same regions;
 - 2. The general organisation of functional connectivity between the modes corresponds across individuals.
 - 3. No group-level priors on time courses, but time course amplitudes are also defined hierarchically.

What are the key features of PFM?

1) Simultaneous group and subject modelling

PFMs optimise group-level and subject-level mode estimations in a unified iterative process, which allows for bidirectional flow of information between population and individuals, leading to:

1. Group-model learning richer population variations

2. Accurate capturing of subject-specific deviations from the group

2) Separating spatial signal from background noise for subject-specific modes- continued

- Non-invasive recordings in fMRI means that data can be noisy
 - In group-level estimations, noise can be cancelled by averaging across individuals
 - Estimating clean modes for individual subjects can be very challenging

2) Separating spatial signal from background noise for subject-specific modes

To resolve this, PFMs use mixture modelling of each functional mode for each subject

- Each mode is summarised with two Gaussian distributions
- One distribution capturing signal, another capturing background noise

3) Separating temporal signal from background noise for subject-specific modes

Similarly, mode timecourses are separated into signal and noise subparts

- Signal part is constrained by a Haemodynamic Response Function (HRF)
- Noise part is modelled with a Gaussian distribution

Part 1 summary - in this lecture we learned that:

- 1. PFMs provide a unified framework to model population and every individual simultaneously
 - This is done via an iterative process, where group model is used for subject-specific regularisation and vice versa

- 2. To achieve this, PFMs use hierarchical Bayesian inference
 - We define probability distributions over spatio-temporal mode characteristics
 - Our aim is to optimise these distributions to explain the data, thus obtaining probabilistic functional modes
 - Hierarchy defined over spatial maps and functional connectivity (NetMats)

- 3. This framework provides the following advantages:
 - Group model capturing more variability
 - More accurate modelling of subject deviation from the group
 - Separating spatial and temporal Signal from background Noise to obtain 'clean' subject modes

Thank you!