Resting state fMRI and ICA

- Introduction to resting state

- Independent Component Analysis

- Single-subject ICA
- Multi-subject ICA

- Dual regression



Resting state methods

ICA

Multivariate voxel-
based approach

Finds interesting
structure in the data

Exploratory “model-
free” method

Spatial approach

Network modelling

- Node-based approach
(first need to parcellate
the brain into functional
regions)

- Map connections
between specific brain
regions (connectomics)

- Temporal approach



Model-based (GLM)
analysis

By +

- model each measured time-series as a linear
combination of signal and noise

- If the design matrix does not capture every signal,
we typically get wrong inferences!



Data Analysis

Confirmatory Exploratory
- “How well does my - “Is there anything
model fit to the data?” interesting in the data”?”
Problem =»> Data = Problem =» Data =
Model =»> Analysis Analysis =» Model
= Results = Results
- results depend on the - can give unexpected

model results
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Variability in FMRI

Experiment

suboptimal event timing, -
Inefficient design, etc. Physmlogy
secondary activation, ill-
defined baseline, resting-

fluctuations etc.

Analysis MR Physics
filtering & sampling artefacts, design MR noise,
misspecification, stats & field inhomogeneity,

thresholding issues etc. MR artefacts etc.



Model-free”?

5.

There is no explicit time-series model
of assumed ‘activity’



Model-free”?

Y'=S'A"+E', where E)~ N(0,d%l)
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There is an underlying mathematical
(generative) model



Decomposition technigues

- try to ‘explain’ / represent the data
- by calculating quantities that summarise the data

- by extracting underlying ‘hidden’ features that are
‘Interesting’

- differ in what is considered ‘interesting’
- are localised in time and/or space (Clustering)
- explain observed data variance (PCA, FDA, FA)

- are maximally independent (ICA)



Melodic

multivariate linear decomposition:




Melodic

multivariate linear decomposition:

FMRI data




Melodic

multivariate linear decomposition:
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Melodic

multivariate linear decomposition:

components Space
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Data is represented as a 2D matrix and
decomposed into components




Melodic

multivariate linear decomposition:

<
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X X B

Data is represented as a 2D matrix and
decomposed into components



What are components”?

- 00

- express observed
data as linear
combination of
spatio-temporal
ProCesses

o

X

-

- techniques differ in
the way data Is
represented by
components
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Spatial ICA for FMRI

space components space
S :
=m 8 —= g i
c = X 9 .
FMRI data a3 3 3 spatial maps
o O =]
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- data is decomposed into a set of spatially
iIndependent maps and a set of time-courses

= McKeown et al.

HBM 1998




Independence



PCA vs. ICA 7

Simulated
Data

(2 components, slightly
different timecourses)
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PCA vs. ICA 7
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PCA vs. ICA 7

-

PCA

e Timecourses
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* Spatial maps and
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PCA vs. ICA 7
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PCA vs. ICA

 PCA finds projections of
maximum amount of variance |
in Gaussian data (uses 2nd o
order statistics only) i
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PCA vs. ICA

 PCA finds projections of

maximum amount of variance |
in Gaussian data (uses 2nd .
order statistics only) o

* Independent Component o
Analysis (ICA) finds d
projections of maximal of 9
iIndependence in non-

Gaussian data (using higher- = = = = = * ==
order statistics) non-Gaussian

data



Correlation vs. independence

Plot x vs. y

* de-correlated =

signals can stillbe |

dependent 'ii
* higher-order "

statistics (beyond U e

mean and variance) High order comelations

can reveal these 74

dependencies o

=sin(z)?

5 Stone et al. 2002
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X% = cos(z)?



Non-Gaussianity
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Non-Gaussianity
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|ICA estimation

® Random mixing results in more Gaussian-
shaped PDFs (Central Limit Theorem)

® conversely:

if mixing matrix produces less Gaussian-
shaped PDFs this is unlikely to be a random
result

B measure non-Gaussianity

® can use neg-entropy as a measure of non-
Gaussianity

4] Hyvirinen & Oja 1997



|ICA estimation

- need to find an unmixing matrix such that the
dependency between estimated sources is
minimised

- need (i) a contrast (objective/cost) function to
drive the unmixing which measures statistical
iIndependence and (i) an optimisation technigue:

- kurtosis or cumulants & gradient descent

- maximum entropy & gradient descent

- neg-entropy & fixed point iteration



Overfitting & thresholding



The ‘overfitting’ problem

fitting a noise-free model to noisy observations:

- no control over signal vs. noise (hon-interpretable
results)

- statistical significance testing not possible

GLM analysis standard ICA (unconstrained)




Probabillistic ICA model

statistical “latent variables” model: we observe linear
mixtures of hidden sources in the presence of Gaussian
noise
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ISsues:
- Model Order Selection: how many components?

- Inference: how to threshold ICs?



Model Order Selection

‘How many components’?

under-fitting: the amount
of explained data

variance is insufficient to
obtain good estimates of

the signals Y4 over-fitting: the inclusion of

too many components leads
to fragmentation of signal
across multiple component
maps, reducing the ability to
identify the signals of interest

sl optimal fitting: the amount of
explained data variance is sufficient
to obtain good estimates of the

signals while preventing further splits
into spurious components




under-fitting

Model Order Selection

optimal fit

over-fitting
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under-fitting

Model Order Selection
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over-fitting
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Thresholding

raw Z transformed IC map (1 - 99 percentile)
SN :
o

Mixture Model probability map

thresholded IC map alternative hypothesis test at p > 0.5

¥ &8




Thresholding

- classical null-hypothesis
testing is invalid

- data is assumed to be a
linear combination of
signals and noise

- the distribution of the
estimated spatial maps
IS a mixture distribution!

right tail




Alternative Hypothesis lest

IC_1 GGNM(3) fit

———s 001& 4.1‘ -1 -5
—_ 0.727 4.57 0.372
—— 0.853 0,07377 0.07339

-3 0 3 6 9

- use Gaussian/Gamma mixture model fitted to the histogram
of intensity values (using EM)



What about overlap®?




What about overlap?

Sources + ICA after
n

A

Sources

-
LA



