
Introduction to MRI 
Acquisition

James Meakin
FMRIB Physics Group

FSL Course, Bristol, September 2012

1



What are we trying to 
achieve?

2



What are we trying to 
achieve?

• Informed decision making: 

• Protocols need to be tailored to the problem 
(Motion? Effect size? Area of activation?)

• Learning some physics will make this less daunting

2



What are we trying to 
achieve?

• Informed decision making: 

• Protocols need to be tailored to the problem 
(Motion? Effect size? Area of activation?)

• Learning some physics will make this less daunting

• A common language:

• Explain your needs to physicists/radiographers

• Understand their response

• There is a LOT of jargon, but you can master it!
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MRI Physics

• Today:

• Basics of (nuclear) Magnetic Resonance

• Image Formation

• Functional MRI

• The BOLD effect

• Acquisition and artefacts
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Nuclear Spin

• Some elementary particles (eg Hydrogen) exhibit “spin”

• Appear to rotate about an axis

• Charge + spin = magnetic moment

spin

H1
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Magnetic Fields (B)

No Field
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Magnetic Fields (B)

• What happens when you place a bunch of 
nuclei with spin into a magnetic field?

• On average, they’ll tend to align with the 
field (a net magnetic moment)

Main B 
Field
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Precession

• A force (Gravity or B Field) tries to tilt the 
spinning object

• But because of spin, the axis precesses instead 
of tilting
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• Energy pulse tips magnetisation away from B0

• ...if energy rotates at resonant frequency: RF pulse!

B0

ω0 = γB0

Excitation

courtesy of William Overall
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• Once excited, magnetisation precesses at resonance 
frequency

B0

Precession

courtesy of William Overall

ω0 = γB0
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• Once excited, magnetisation precesses at resonance 
frequency
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• Changing magnetic field induces current in wire

• Precessing magnetisation detected with coil

• Can only detect component in transverse (xy) plane

B0

Signal detection

courtesy of William Overall
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Magnetic Resonance

• Magnetic: external field (B0) magnetises sample

• Usually detect hydrogen protons in water

• Potentially any element with spin (1H, 19F,  31P...)

• Resonance: magnetization has characteristic frequency 

• Also called the “Larmour” frequency

• Proportional to the strength of the magnetic field the spin is in

• For protons, resonance frequency is in RF range

ω0 = γB0
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• Magnetization “relaxes” back into alignment with B0

• Speed of relaxation has time constants: T1 and T2

B0

Relaxation

courtesy of William Overall
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B0

Relaxation
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Mxy

Signal decays
according to T2

in transverse plane

Relaxation: T1 and T2

RF pulse

Time
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Echo time (TE) & T2 contrast

Echo time (TE)
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White 
matter

Gray 
matter

13



MRI Physics

• Today:

• Basics of (nuclear) Magnetic Resonance

• Image Formation

• Functional MRI

• The BOLD effect

• Acquisition and artefacts
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Making an image

B0

Differentiate between signal from different locations

magnet
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• Add a spatially varying magnetic field gradient (G)

• Field varies linearly along one direction

• Gradient field adds to or subtracts from B0

Making an image

B0
G

Differentiate between signal from different locations

magnet

15



• Resonance frequency is proportional to total field

B0

Precession

courtesy of William Overall

ω0 = γ(B0+ΔB)
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Magnetic gradients

Higher
frequency

Lower
frequency

Higher field

Lower field

B0
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• Protons at each position precess at different frequencies

• RF coil hears all of the protons at once

• Distinguish material at a given position by selectively 
listening to that frequency

Magnetic gradients

Higher
frequency

Lower
frequency

Higher field

Lower field

B0

17



Decoding Frequency: 
The Fourier Transform

• Expresses a function of time as a function 
of frequency

• Imagine an orchestra: you differentiate 
between different instruments based on 
their frequency
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The Fourier Transform
A

m
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Fourier
transform

Time / s

Fourier
transform A
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Frequency /  Hz

Bass

Cellos 
(loudest)

Violins
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Spatial frequencies

Image
Space
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Spatial frequencies

Image
Space
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Spatial frequencies

Brightness = How much of this
spatial frequency is in your image

Image
Space K-Space

Fourier
Transform
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ky=0

kx=0

2D “k-space” describes contribution 
of each spatial frequency

xx

x

(2,1)

(0,4)

(8,1)
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What does this have to 
do with MRI?

• Remember, we detect all excited protons in 
the object at the same time

• They’re resonating at different frequencies 
due to the gradients

• We acquire the data in k-space!

• We then fill k-space & Fourier transform it 
to get the image
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• ➀ Excite magnetization (transmit RF pulse)

• ➁ Wait for time TE (“echo time”)

• ➂ Acquire signal from transverse magnetization (Mxy)

• ➃ Wait until time TR (“repetition time”)

• ➄ Repeat from ➀

RF

Acq

➀ ➁ ➂ ➃ ➄

TE

TR

Simple MRI “pulse sequence”
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Linescan (2DFT) Acquisition

Acquire one line after each excitation
Useful for structural images (minimal artefacts)

kx

ky
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Acquire one line after each excitation
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Echo-planar Imaging (EPI) Acquisition

Acquire all of k-space in a “single shot”
Used for FMRI, diffusion imaging

kx

ky
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Echo-planar Imaging (EPI) Acquisition

Acquire all of k-space in a “single shot”
Used for FMRI, diffusion imaging

kx

ky
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SNR =

Signal

σnoise

Signal-to-noise ratio (SNR)
Signal-to-noise ratio: describes signal “robustness”
All else being equal, we want to maximise SNR!!

low SNRhigh SNR
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Signal-to-noise ratio (SNR)
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Protocol choices affecting SNR...

• RF receive coil & field strength

• Timing: TE & TR

• Voxel volume

• Scan duration

• Anything affecting signal!!!
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What affects noise? Acquisition time

scan 
time

σnoise

Longer acquisition ⇒ less noise ⇒ 
higher SNR

SNR improves with the square root of 
scan time
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Larger voxels have signal from more tissue!

• Signal proportional to voxel volume

? 8x
SNR

–2x2x2mm has 8x higher SNR than 1x1x1mm!

What affects signal? Voxel volume
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? 8x
SNR

Averaging to achieve high resolution
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? 8x
SNR

Can we recover lost SNR by averaging?
Yes! But it requires a 64-fold increase in scan 

time!

Averaging to achieve high resolution
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Contrast-to-noise ratio (CNR)
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MRI Physics

• Today:

• Basics of (nuclear) Magnetic Resonance

• Image Formation

• Functional MRI

• The BOLD effect

• Acquisition and artefacts
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Deoxyhemoglobin is the source 
of FMRI signal

Oxyhemoglobin: diamagnetic (same as tissue)
Deoxyhemoglobin: paramagnetic (magnetic)

34



The BOLD Effect       [ Ogawa et al, 1990 ]

Blood Oxygenation Level Dependent (BOLD) effect
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The BOLD Effect       [ Ogawa et al, 1990 ]

Blood Oxygenation Level Dependent (BOLD) effect

imaging voxel

Creates a range of frequencies in imaging voxel
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Image artefacts worse at higher field strength

3T is currently a good tradeoff of signal vs artefacts

SNR and BOLD increase with field strength

BOLD signal and field strength (B0)
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Sources of BOLD Signal

Neuronal 
activity Metabolism

Blood flow

Blood volume

[dHb] BOLD
signal 

Indirect measure of activity (via metabolism!)
Subject’s physiological state & pathology can change 

neurovascular coupling, muddying interpretation
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• Vascular response to activity is delayed & blurred
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• Vascular response to activity is delayed & blurred

• Described by “hemodynamic response function” 

• Limits achievable temporal resolution

• Must be included in signal model

Stimulus
timing

BOLD
response

on

off
time

Hemodynamic response function (HRF)
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Typical stimulus lasts 1–30 s
Rapid imaging: one image every few seconds
Anatomical images take minutes to acquire!
Acquire “single-shot” images (e.g., EPI)

1 23 …image TR

What is required of the scanner?
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Parameter Value Relevant points

TE
(echo time)

1.5T: 60 ms
3.0T: 30-40 ms
7.0T: 15-20 ms

Determines functional 
contrast, set ≈T2*

TR
(repeat time)

1–4 s HRF blurring < 1s;
Poor resolution > 6s 

Matrix size / 
Resolution

64x64 / 
2-3 mm

Limited by distortion, SNR, 
FOV

Scan duration 2-60 mins Lower limit: sensitivity      
Upper limit: compliance

* Typical, not fixed!!
Typical* FMRI Parameters
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• Noise: signal fluctuations leading to less robust 
detection with respect to statistical measures

Purely random noise
(example: “thermal”)

Structured noise
(example: “physiological”)

time

Confounds: Noise
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Confounds: Artefacts

Dropout Distortion

Artefacts: systematic errors that interfere 
with interpretability of data/images

“Ghosting”
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Source of signal dropout

BOLD contrast is based on signal dephasing
BOLD imaging requires long delay (TE) for contrast
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Dephasing also occurs near air-tissue boundaries 
Sensitivity to BOLD effect reduces near air-tissue 

boundaries

Source of signal dropout

sinus
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Long TEShort TE

Dephasing near air-tissue boundaries (e.g., sinuses)
BOLD contrast coupled to signal loss (“black holes”)

Air-tissue effect is often larger than BOLD effect 
surrounding vessels!

BOLD Signal Dropout
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We think frequency maps to spatial location...
So errors in frequency cause spatial mis-localization!

Field map

field offset local warping

EPI

Image distortion
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Non-BOLD fMRI

• BOLD depends on CBF, CBV, CMRO2

• Consider looking at these variables 
separately for longitudinal studies:

• CBF - Arterial Spin Labeling (ASL)

• CBV - Vascular Space Occupancy (VASO)

• CMRO2 - Calibrated BOLD

50



Final Thoughts
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Final Thoughts

• Learn how different experimental parameters 
affect SNR and image artefacts

• Tradeoffs: you can’t get something for 
nothing, but you do have options

• Get to know a physicist/radiographer: get 
help setting up study protocols, show them your 
artefacts

• Quality assurance: always look at your data, 
even if you are running a well-tested protocol
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Thank you!
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