FSL Course 2016

Clinical (Presurgical) Applications of FMRI & Tractography using FSL

Andreas J. Bartsch

Dep. of Neuroradiology, University of Heidelberg Dep. of Neuroradiology, University of Wuerzburg FMRIB Centre, University of Oxford Radiology Bamberg, Germany

Outline of the Talk

- Clinical Challenge -> Clinical Relevance -> Solution (Is there any?, How can FSL help?)
- Focus on Language Networks, Auditory System & Pyramidal Tract: FMRI-Mapping & DW-Tractography (with Xing fibres modeling)
- Case-based Illustrations

FMRI / Tractography prior to 'bionic' (cochlear) implantation Assessing Interhemispheric Dominance ("Lateralisation") prior to Epilepsy Surgery

Presurgical Planning / Intraoperative Neuro-navigation for Resection of Intraaxial Lesions

Outline of the Talk

- Clinical Challenge -> Clinical Relevance -> Solution (Is there any?, How can FSL help?)
- Focus on Language Networks, Auditory System & Pyramidal Tract: FMRI-Mapping & DW-Tractography (with Xing fibre modeling)
- Case-based Illustrations

bartsch@radvisory.net

FMRI / Tractography prior to 'bionic' (cochlear) implantation Assessing Interhemispheric Dominance ("Lateralisation") prior to Epilepsy Surgery

Presurgical Planning / Intraoperative Neuro-navigation for Resection of Intraaxial Lesions

Outline of the Talk

- Challenge -> Clinical Relevance -> Solution (Is there any?, How can FSL help?)
- Focus on Language Networks, Auditory System & Pyramidal Tract: FMRI-Mapping & DW-Tractography (with Xing fibre modeling)
- Case-based Illustrations
 - FMRI / Tractography prior to 'bionic' (cochlear) implantation Assessing Interhemispheric Dominance ("Lateralisation") prior to Epilepsy Surgery

Presurgical Planning / Intraoperative Neuro-navigation for Resection of Intraaxial Lesions

- Reduced patient comfort
- Startle movements
- Impaired audio transmission
- Recuded FMRI-activations

Solution 1: Low Impact Noise Aquisition or 'Continuous' EPI

Solution 2 (to reduce EPI Noise): Active Noise Cancellation (ANC)

00	_	-	ANC	on off L R Gegensel	hall_TR3000m	TD161ms_esp(.60ms		-	_
			I ≩ Ø k P ↔ * +0 Built-in Output	-24 0 0 -	-24 * d	4) * 2' [Ib] [B] 4	0 . 0 . 0		£.	_
50.0	51.0	52.0		54.0 55.0	56.0	57.0	58.0 59	0 100.0	1:01.0	1:02.0
Tansgur	1.0 0.5- 0.0- -0.5- -1.0 1.0 0.5-					Unatten		EPI	Noise	
	0.0- -0.5- -1.0	iinnai		harmonden	and the second	muummu	ctive Activ	e Noise C	ancellati	ion
rojekt-Frequ 44100 💽			ang der Auswahl: (h 00 m 00 s •		Audioposition 00 h 00 m 00				~	74.5
	a com Atudication	n auszuwählen							Wert 441	00

Challenge Before You Start Mapping

- *detect* the lesion (*if there is any*)
 & establish its location with respect to the presumed components of the functional network(s) of interest (FNOI; e.g. speech / language)
- *detect* even subtile deficits of the patient
- *select* the best paradigm

Ventral & Dorsal Fibre Pathways implied in Speech & Language

Meynert, 1884; Catani & Budisavljevic, 2014; cf. Rolheiser et al., J Neurosci 2011; Duffau et al., J Neurosurg 2008

Challenge Before You Start Mapping

- detect the lesion (if there is any)
 & establish its location with respect to the presumed components of the functional network(s) of interest (FNOI; e.g. speech / language)
- *detect* even subtile deficits of the patient
- *select* the best paradigm

Challenge Before You Start Mapping

- detect the lesion (if there is any)
 & establish its location with respect to the presumed components of the functional network(s) of interest (FNOI; e.g. speech / language)
- *detect* even subtile deficits of the patient
- *select* the best paradigm

<section-header><section-header><section-header><text><text>

Just "Messy Maps" ? Dual Stream for Speech & Language !

Speech/Language-Lateralisation in Resting State-FMRI ? Task-FMRI Reference Results

Solution

Based upon detailed neuropsychological examination:

- Visual vs. auditory stimulation
- Performance-adjusted presentation speed
- Task-based vs. -free (=passive) paradigm
- Event-related vs. blocked design

Ferra et al., 201

AUDIENCE CASE 1: 9-yo Boy, Refractory (Lesional) Epilepsy

What is the Diagnosis, why is an FMRI requested ? encephalotrigeminal angiomatosis (Sturge-Weber syndrome); establish speech / language lateralization prior to left hemispherotomy*

How do we map this patient BEST ?

CLINICAL RELEVANCE: What we are going to find will vary !

CHALLENGE: Which Blobs / Tracts are (in-)dispensible ? How far do they extend ? CLINICAL RELEVANCE: Huge – our clinical decisons will vary !

Challenge: Tracking in Perifocal Edema increases False-Negatives

CHALLENGE: EPI suffers from LOCAL SIGNAL LOSS

- bleedings, flow-void, drilling abrasions, calcinations etc. altering the EPI signal
 - → Make sure lesion is covered by analysis mask! Always look at original EPI (not just stats-overlays on highres anatomical) ! arteriovenous malformation (AVM; hypointense flow-void)

er & Bartsch, Eur Radiology 2009

left temporal cavernoma (Zabramski type I; intracellular MetHb) rtsch et al., 2014 (In: Diffusion MRI, Eds.: Johansen-Berg & Behrens)

FMRI- & Diffusion-EPI SIGNAL

...and, for GE-EPI, SIGNAL DROPOUTS can cause REGISTRATION ERRORS

CLINICAL RELEVANCE - CASE 3: Incidental left T2/3-Astrozytoma °III

SOLUTION: Optimal Distortion Correction & Registration for Presurgical Planning

Gross Tumor Resection (GTR) – Is the Deficit predictable ?

Transient Pure Alexia without Agraphia or Hemianopsia

Smoothing > 7x of the Voxel Size can result in False-Negatives

ARTICLES	Three-tesla functional MR language mapping Comparison with direct cortical stimulation in gliomas
	Comparison with direct cortical stimulation in gliomas
Grigory Kacheinski, MSc	ABSTRACT
Charles Melleris, MD Johan Pallud, MD, PhD Edouard Dezamia, MD Gaiiliuarne Turc, MD	Objective To evaluate the accuracy of functional MRI (MRB) at 3T, as currently used in the pre- operative mapping of language areas, compared with direct contrail stimulation (DCS) during awake surgery, in patients with supratentorial glomaes; and to identify clinical, histopathologic, and radiologic factors associated with MRI/DCS discregancies.
Odile Rigans-Viseld, S.T. Cardine Malherler, PhD Panline Roca, PhD Yanirer Leidert, MD, PhD Yanirer Cardien, MD, PhD Fabrice Christen, MD, PhD Berntand Devani, MD Jean-Francois Meder, MD, PhD	Mobile Language mapping with MRI and CCS of 40 contexcive patients with glorina 26 key regists, 16 high registed in functional areas ever entruptocetivity analyzed. Three block- disignat tasks wave performed during MRI Bitter word generation, category word generation, manifor association Lloring waves auxiliary, eloqued mans were mapped ungo CCS, binded to MRI. And by vale comparison of the 2 technolous was performed ungo a cottal grid MRI to MRI. And by vale comparison of the 2 technolous was performed ungo a cottal grid MRI manners, and the presence of the comparison of the 2 technology and the second performance of the comparison of the technology manners, the second task wave and the second base of the energies and the manner with dynamic susceptibility contrant MRI in MRI false costitive and false negative accur- terios, were assessed ungo interviction (applicit negatives).
Catherine Oppenheim, MD, PhD	Revelue Df 2.114 stimulated cortical sites, 103 were positive for language during DCS. Sensitivity and specificity of language MRI cortificities and specificity of language MRI cortifications interval (C) 2.07-572 and 83.4% (635% C) 71-88.33, respectively, Astrocyclomes subtype lodes natio (DRI 2.50 (12.32-4.76); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR 2.17 (1.08-4.35); p = 0.007); tumer CRSV <1.5 (DR
Composition in Di-Dypolanic Composition 2 many ann 5	$0.03, higher cortical rCBV IOR 2.22 [1.15–4.17]; \rho=0.02, and distance to turner >1.cm IOR 2.46 [1.82–3.32]; \rho=0.001 were independently associated with RMRI false-positive occurrence$
	Conclusions: There are pitfalls in preoperative fMRI as currently used in prooperative language mapping in glioma patients, made more complicated when high-grade and hyperperfused tumors are evaluated. Neurology 2018;84:19

Increase the Spatiotemporal EPI Resolution ? Simultaneous Multi-Slice !

Take Home

• Preoperative patient condition matters:

epilepsy surgery - patients with no presurgical deficits or brain pathology are at high risk

tumor surgery - patients with no presurgical deficits and the small pathologies tend to fare best

• There is no uniform mapping / tracking procedure: paradigms, seeds / targets etc. need to be tailored to the individual patient

performance, deficits & pathology

• Current limitations and future challenges:

FMRI & tractography i) measure only epiphenomena of neuronal acitivity & axonal integrity -> false-negative risk, ii) can't discriminate essential from dispensable activations / tracts, iii) spatial extent is probabilistic

Take Home

• Preoperative patient condition matters:

epilepsy surgery - patients with no presurgical deficits or brain pathology are at high risk

tumor surgery - patients with no presurgical deficits and the small pathologies tend to fare best

• There is no uniform mapping / tracking procedure:

paradigms, seeds / targets etc. need to be tailored to the individual patient performance, deficits & pathology

• Current limitations and future challenges:

FMRI & tractography i) measure only epiphenomena of neuronal acitivity & axonal integrity -> false-negative risk, ii) can't discriminate essential from dispensable activations / tracts, iii) spatial extent is probabilistic

Take Home

• Preoperative patient condition matters:

epilepsy surgery - patients with no presurgical deficits or brain pathology are at high risk

tumor surgery - patients with no presurgical deficits and the small pathologies tend to fare best

• There is no uniform mapping / tracking procedure:

paradigms, seeds / targets etc. need to be tailored to the individual patient performance, deficits & pathology

• Current limitations and future challenges:

FMRI & tractography i) measure only epiphenomena of neuronal acitivity & axonal integrity -> false-negative risk, ii) can't discriminate essential from dispensable activations / tracts, iii) spatial extent is probabilistic

