Introduction to MRI Physics

Mark Chiew (mark.chiew@ndcn.ox.ac.uk) (with slides from Karla Miller)

Slides available at:

https://users.fmrib.ox.ac.uk/~mchiew/docs/fsl_introMRI.pdf

https://users.fmrib.ox.ac.uk/~mchiew/teaching

What are we trying to achieve?

Informed decision making: Taking some responsibility for the design, implementation & execution of your study

- Choosing the right imaging protocol for your project
- Learning some **physics** will make this easier

A common language: You need to be able to communicate your needs to experts (physicists/radiographers/techs)

- Build an MR **vocabulary** (terminology/jargon)
- Gain some intuition behind imaging concepts

MRI Physics

Monday:

- ★ Basics of magnetic resonance
- ★ Image formation
- ★ Signal statistics (SNR)
- ★ Functional MRI

Wednesday:

- * Image contrast (T_2 and T_2^*)
- * Spin vs. gradient echo
- ★ Fast imaging
- ★ Diffusion MRI

MRI Physics

★ Basics of magnetic resonance

- ★ Image formation
- ★ Signal statistics (SNR)
- ★ Functional MRI

"Spin"

Most sub-atomic particles have a property of "spin"

• Think of "spin" as the thing that grants each particle a small magnet-like property

All hydrogen protons will act like little magnets

Conventional MR imaging mainly "sees" water!

Can also do this with phosphorous

The External Magnetic Field (B₀)

Normally: protons randomly oriented \Rightarrow no net magnetism

External field: protons align slightly \Rightarrow net magnetization (M) Only a few parts-per-million!

Magnetic resonance

Magnetic: external field (B₀) magnetizes sample

The "Larmor Equation" relates the resonant frequency to magnetic field strength

Resonance: magnetization has characteristic (resonant) frequency proportional to external field B₀

The **resonance** of a system defines its **preferred** frequency

Coordinate system

Direction of main field (B₀) defines coordinate system

Longitudinal axis: parallel to B₀ (typically z)

Longitudinal magnetisation: Portion of M aligned with B₀

Coordinate system

Direction of main field (B₀) defines coordinate system

Transverse plane: perpendicular to B₀ (typically x,y)

Transverse magnetisation: Portion of M perpendicular to B₀

The magnetisation acts like a classic physical system

In many ways analogous to simple oscillators, like swings or pendulums

1. Excitation

Magnetization can be moved or rotated by applying "excitation" magnetic fields (RF)

2. Resonance

Magnetization will "resonate" at a frequency proportional to magnetic field strength

3. Relaxation

The oscillations die out, i.e. magnetisation "relaxes" back to equilibrium – speed of relaxation is tissue-dependent!

The Basic MRI Experiment: 1. Excitation

courtesy of William Overall $\omega_0 = \gamma B_0$

Excitation pulse (B₁) tips/flips magnetisation away from B₀

Excitation must occur at the resonant frequency $\varpi_{0,}$ which is typically in the radio-frequency (RF) range

The Basic MRI Experiment: 1. Excitation

courtesy of William Overall

In a frame that rotates with B_1 , magnetisation is simply "flipped" or "tipped" out of alignment with B_0

Hence the term "flip angle" or "tip angle"

The Basic MRI Experiment: 2. Resonant Precession

courtesy of William Overall

$$\omega_0 = \gamma B_0$$

Once excited, magnetisation precesses/oscillates/rotates at resonance frequency

The Basic MRI Experiment: 2. Resonant Precession

courtesy of William Overall

As the magnetization precesses (and relaxes) The precession induces voltage in the receive coils Coils only detect precessing transverse magnetisation

The Basic MRI Experiment: 3. Relaxation

courtesy of William Overall

As it precesses, it also "relaxes" back into alignment with B_0 Speed of relaxation has time constants: T_1 , T_2 , T_2^* , which relate to the signal strength (image contrast!)

The Basic MRI Experiment: 3. Relaxation

courtesy of William Overall

 T_1 : describes speed of recovery along longitudinal (z) axis T_2 , T_2^* : describe speed of signal decay in transverse (x-y) plane

The 3 Musketeers (Magnetic Fields)

B_0

B_1

 G_x, G_y

Main magnetic field (B₀): always on, static

Excitation RF field (B₁): pulsed on & off, 60-300 MHz

Magnetic field gradients (G): pulsed on & off, "static"

MRI scans: carefully timed RF and gradient "pulse sequences"

MRI Physics

- ★ Basics of magnetic resonance
- ★ Image formation
- ★ Signal statistics (SNR)
- ★ Functional MRI

Magnetic Field Gradients

Differentiate between signal from different locations

Add a spatially varying magnetic field gradient (G)

- Field varies linearly along one direction
- Gradient fields add to or subtract from B₀

No Gradient

x-Gradient

y-Gradient

Precession

courtesy of William Overall

$$\omega_0 = \gamma(\mathsf{B}_0 + \mathsf{B}_{grad})$$

Resonance frequency is proportional to total field: Static B₀ + applied gradients

Gradients and Resonance

$$\omega_0 = \gamma(\mathsf{B}_0 + \mathsf{B}_{\text{grad}})$$

We use gradients to modulate the magnetic field strength Different field strengths correspond to different frequencies Frequency information is used to determine our image

We can use frequency content to help reconstruct our original signals

Frequency decomposition

Simple "imaging" experiment (1D)

This is "frequency encoding"

Magnetic gradients

G_x, G_y

It's a bit more complex in more than 1 dimension Have 3 gradient fields (along x, y, z) Manipulate the strength & timing independently

y-gradient in 2D

0.05	<u></u>	low
		high
		···ه···

Magnetic field gradients

x+y gra	dient ir	1 2D	
ow 0.05			

high

Combined field gradients

Spatial frequencies or patterns

At any instant in time, signal is across space is defined by a specific "pattern" of the magnetisation phase (orientation),

i.e., its spatial frequency that depends on the applied gradients

Spatial frequencies:

- wave-like pattern over space instead of time
- describes encoding in all dimensions (1D/2D/3D)

Gradients and Spatial Frequency

Gradients and Spatial Frequency

higher resonance frequency

faster precession

stronger gradient magnetic field

lower resonance frequency

slower precession

zero gradient

This is one spatial frequency... 2 cycles along y: k_y=2 signal signal 0 cycles along x: k_x=0 X

This is another one...

This is another one...

Each of these represents one 2D pattern or frequency: denote (k_x,k_y)

"k" values are the number of cycles in each direction

2D "k-space" describes contribution of each spatial frequency

2D "k-space" describes contribution of each spatial frequency

Sum total signal after application of these patterns determines the "value" of each k-space location

"k-space"

Image

Think of k-space as a universal set of ingredients for an imaging <u>recipe</u>

Or, consider each k-space sample a different projection of the object being imaged

Or, think of each pattern (k-space location) as a <u>filter</u> on a camera

Imagine our "MRI camera" only sees one colour at a time

Imagine our "camera" can only see one colour at a time (blue filter)

Imagine our "camera" can only see one colour at a time (red filter)

Imagine our "camera" can only see one colour at a time (green filter)

Combine the filtered images to form the final image

Scanner takes a series of measurements with each k-space "spatial filter"

The "spatial filters" are applied using gradients

Measurements are then combined using the Fourier Transform to form image

Scanner takes a series of measurements with each k-space "spatial filter"

Higher resolution means "finer" features, which require "finer" filters

The trajectory is the ordering of k-space data acquisition Trajectory = Path through k-space or the sequence of spatial filters sampled k_y=0

k_×=0

Linescan (2DFT) Acquisition

Acquire one line after each excitation Useful for structural images (minimal artifacts)

Echo-planar Imaging (EPI) Acquisition

Acquire all of k-space in a "single shot" Used for FMRI, diffusion imaging

Slice Selection

Slices excited and acquired sequentially (separately) Most scans acquired this way (including FMRI, DTI)

Simultaneous Multi-slice Imaging

MRI Physics

- ★ Basics of magnetic resonance
- ★ Image formation
- ★ Signal statistics (SNR)
- ★ Functional MRI

Signal-to-noise ratio (SNR)

high SNR

 $SNR = \frac{Signal}{\sigma_{noise}} \quad \text{(magnitude)} \\ \text{(standard deviation)}$

Signal-to-noise ratio: describes signal "robustness" All else being equal, we want to maximize SNR!!

Signal-to-noise ratio (SNR)

SNR = 1SNR = 2SNR = 5SNR = 10 SNR = 50 SNR = 20

Protocol choices affecting SNR...

- RF receive coil & field strength
- Timing: bandwidth, TE & TR
- Voxel volume
- Scan duration (imaging time)
- Anything affecting signal!!!

SNR and acquisition time or averages

Longer acquisition \Rightarrow less noise \Rightarrow higher SNR SNR improves with the square root of scan time i.e., to double SNR you need to scan 4x longer

SNR and voxel volume

Larger voxels have signal from more tissue!

- Signal proportional to voxel volume
 - 2x2x2mm has 8x higher SNR than 1x1x1mm!

Averaging to achieve high resolution

Can we recover lost SNR by averaging? Yes! But requires a 64-fold increase in scan time (because you only get square root benefit)

Contrast-to-noise ratio (CNR)

SNR = 10, CNR = 1

SNR = 10, CNR = 6

SNR = 10, CNR = 2

SNR = 10, CNR = 8

SNR = 10, CNR = 4

SNR = 10, CNR = 10

MRI Physics

- ★ Basics of magnetic resonance
- ★ Image formation
- ★ Signal statistics (SNR)
- ★ Functional MRI

A source of signal loss: dephasing

When spins are "in-phase", they are all oriented the same way Over time, the spins within a voxel lose alignment ("dephase")
Apparent increase in $T_2 = T_2^*$

Dephasing causes magnetization vectors to partially "cancel" each other out

Dephasing results in a lower *net* signal magnitude Apparent decrease in T₂: called T₂* (more on Wednesday)

Deoxyhaemoglobin is the source of FMRI signal

Deoxyhaemoglobin is the source of FMRI signal

When oxygen is bound to the haemoglobin, it shields the magnetic effects of iron atoms in the heme groups

Deoxyhaemoglobin is the source of FMRI signal

Without oxygen, the iron (Fe) is exposed, causing magnetic field inhomogeneities due to its strong magnetic propertiesField inhomogeneity leads to T2* change (FMRI signals)

The BOLD Effect

[Ogawa et al, 1990]

imaging voxel

Blood Oxygenation Level Dependent (BOLD) effect

Vessels, depending on orientation and blood oxygen content will alter their local magnetic fields

BOLD Effect – vessel size

radius = 50 μ m

radius = 100 μ m

radius = 150 μ m

BOLD Effect – blood oxygenation level 0.5 Strength of Magnetic **B**₀ direction 0 **Field Inhomogeneity** -0.5 Water Water Water Vessel Vessel Vessel

Oxygenation = 60% Oxygenation = 30% Oxygenation = 0%

Vascular Response to Activation

 $\begin{array}{c} & HbO_2 = oxyhemoglobin \\ & dHb \\ \hline & blood flow \\ & HbO_2 \\ \hline & blood volume \\ & HbO_2 \end{array} \end{array}$

BOLD Contrast

Typically, 1–5% signal change

BOLD signal and field strength (B₀)

SNR and BOLD effects can increase with field strength But image artefacts get worse at higher field strength 3T is currently a good tradeoff of signal vs artefacts

Sources of BOLD Signal

Indirect measure of activity (via metabolism!)

Subject's physiological state & pathology can change neurovascular coupling, muddying interpretation

Hemodynamic response function (HRF)

Vascular response to activity is delayed & blurred Described by "haemodynamic response function"

Limits achievable temporal resolution Must be included in signal model

What is required of the scanner?

Typical stimulus lasts 1–30 s Rapid imaging: an image every few seconds Anatomical images take minutes to acquire! Acquire "single-shot" images (e.g., EPI)

Typical* FMRI Parameters

* Typical, not fixed!!

Parameter	Value	Relevant points
T _E (echo time)	1.5T: 60 ms 3.0T: 30-40 ms 7.0T: 15-25 ms	Determines functional contrast, set ≈T2*
T _R (repeat time)	1–4 s	HRF blurring < 1s; Poor resolution > 4s
Matrix size / Resolution	64x64 – 96x96 2–3 mm	Limited by distortion, SNR, FOV
Scan duration	2-15 mins	Lower limit: sensitivity Upper limit: compliance

Confounds: Noise

Purely random noise (example: "thermal")

Structured noise (example: "physiological")

Noise: signal fluctuations leading to less robust detection with respect to statistical measures

Confounds: Artefacts

Artefacts: systematic errors that interfere with interpretability of data/images

Source of signal dropout

BOLD contrast is based on signal dephasing BOLD imaging requires longish delay (T_E) for contrast

Dropout is just extreme dephasing

Dephasing also occurs near air-tissue boundaries Sensitivity to BOLD means signal loss near air-tissue boundaries

BOLD Signal Dropout

Short TE

Long TE

Dephasing near air-tissue boundaries (e.g., sinuses) BOLD contrast coupled to signal loss ("black holes") Air-tissue effect is often larger than BOLD effect Dropout is not correctable post-acquisition!

Image distortion

field offset

Field map

EPI

We think frequency maps to spatial location... So errors in frequency cause spatial mis-localization! More on Wednesday...

Final thoughts

Understand how different experimental parameters affect SNR and image artefacts

Tradeoffs: you can't get something for nothing, but you do have options

Get to know an engineer/physicist/radiographer: get help setting up study protocols, show them your artefacts

Quality assurance: always look at your data, even if you are running a well-tested protocol

Questions:

mark.chiew@ndcn.ox.ac.uk