

FMRI group analysis

- Overview
- Fixed versus mixed effects
- Multiple sessions per subject

Similarities across modalities

2. Data preprocessing

3. Single-subject analysis

4. Group-level analysis

5. Statistical inference

Different across modalities

Does the group activate on average?

Does the group activate on average?

Does the group activate on average?

$$Y_k = X_k \beta_k + \epsilon_k$$

First-level GLM on Mark's 4D FMRI data set

Does the group activate on average?

Does the group activate on average?

Does the group activate on average?

$$Y_k = X_k \beta_k + \epsilon_k$$

All first-level GLMs on 6 FMRI data set

Single Group Average

Does the group activate on average?

Single Group Average

Does the group activate on average?

00	Model	
1		
1		
1		
1		
1		
1		
1		
1		
C1	group mean	1

Fixed versus mixed effects

Fixed-Effects Analysis

Do these exact 6 subjects activate on average?

Fixed Effects Analysis:

- estimate the mean across these subject
- only variance is within-subject variance

Mixed-Effects Analysis

Does the population activate on average?

$$Y_K = X_K \beta_K + \epsilon_K$$

$$\beta_K = X_g \beta_g + \epsilon_g$$

Mixed-Effects Analysis:

- Consider the 6 subjects as samples from a wider population
 - estimate the mean across the population
 - between-subject variance accounts for random sampling

Multiple sessions per subject

All-in-One Approach

- Could use one (huge) GLM to infer group difference
 - difficult to ask sub-questions in isolation
 - computationally demanding
 - need to process again when new data is acquired

Summary Statistics Approach

In FEAT estimate levels one stage at a time

- At each level:
 - Inputs are summary stats from levels below (or FMRI data at the lowest level)
 - Outputs are summary stats or statistic maps for inference
- Need to ensure formal equivalence between different approaches!

Unpaired Two-Group Difference

 We have two groups (e.g. 9 WashU, 7 Oxford) with different betweensubject variance

Is there a significant group difference?

- estimate means
- estimate std-errors (FE or ME)
- test significance of difference in means

Unpaired Two-Group Difference

Is there a significant group difference?

Unpaired Two-Group Difference

Is there a significant group difference?

FLAME

FMRIB's Local Analysis of Mixed Effects

- Fully Bayesian framework
 - Input COPES, VARCOPES & DOFs from lowerlevel
 - estimate COPES, VARCOPES & DOFs at current level
 - pass these up
- Infer and threshold at top level (Z-stat)
- Equivalent to All-in-One approach

FLAME Inference

- Default is:
 - FLAME1: fast approximation for all voxels
- Optional slower, slightly more accurate approach:
 - FLAME1+2:
 - FLAME1 for all voxels, FLAME2 for voxels close to threshold
 - FLAME2: MCMC sampling technique

Choosing Inference Approach

1. Fixed Effects

Use for intermediate/top levels

2. Mixed Effects - OLS

Use at top level: quick and less accurate

3. Mixed Effects - FLAME 1

Use at top level: less quick but more accurate

4. Mixed Effects - FLAME 1+2

Use at top level: slow but even more accurate

FLAME vs. OLS

- allow different within-level variances (e.g. patients vs. controls)
- allow non-balanced designs (e.g. containing behavioral scores)
- allow un-equal group sizes

FLAME vs. OLS

- Two ways in which FLAME can give different Z-stats compared to OLS:
 - higher Z due to increased efficiency from using lower-level variance heterogeneity

FLAME vs. OLS

- Two ways in which FLAME can give different Z-stats compared to OLS:
 - Lower Z due to higher-level variance being constrained to be positive (i.e. solve the implied negative variance problem)

Multiple Group Variances

- can deal with multiple group variances
- separate variance will be estimated for each variance group (be aware of #observations for each estimate, though!)
- EVs can only have non-zero values for a single group

• 8 subjects scanned under 2 conditions (A,B)

Is there a significant difference between conditions?

First, let's try an unpaired T-test

subject mean accounts for large prop. of the overall variance

de-meaned data

subject mean accounts for large prop. of the overall variance

de-meaned data

Model out each subject's mean

- Additional measurements (e.g. age; disability score; behavioral measures like reaction times)
- use covariates to 'explain' variation

- Additional measurements (e.g. age; disability score; behavioral measures like reaction times)
- use covariates to 'explain' variation

Need to demean covariates

00	Model		998
1			
1			"
1			
1			
1			
1			Michigan Michigan
1			
C1	group mean	1	0
02	reaction time	0	1

Break Time!

