

Diffusion MRI Processing and Analysis

Overview

- What is Diffusion? Diffusion-weighting in MRI
- Diffusion Tensor Model and DTI
- Tract-Based Diffusion analysis (TBSS)
- Distortion Correction for Diffusion MRI

Diffusion - Brownian Motion

Molecules are in constant motion at nonzero absolute temperatures (> -273° C)

Diffusion = thermally-driven random motion

Diffusion - Brownian Motion

Albert Einstein (1879-1955)

How can we describe this motion? For an ensemble of molecules, in *n*-dimensional space:

 $\langle x^2 \rangle = 2nDt$ time mean squared

displacement

Diffusion coefficient

Valid for a homogeneous, barrier-free medium.

Another way to describe Einstein's equation:

For a barrier-free medium, **diffusion displacements of an ensemble follow a Normal distribution** with N(0, 2tD):

- Zero-mean displacement

- Variance proportional to time and the diffusion coefficient

Water Diffusion in the Brain. Why is it Interesting?

Diffusion is restricted by tissue boundaries, membranes, etc. Marker for tissue microstructure (healthy and pathology) Diffusion is **anisotropic** in white matter [Beaulieu, NMR Biomed, 2002]

Apparent Diffusion

Observed diffusion in tissues depends on the experiment = "Apparent diffusion" & "Apparent diffusion coefficient" (ADC)

Pulsed-Gradient Spin-Echo Sequence:

To achieve diffusion-weighting along a direction **x**, apply strong magnetic field gradients along **x**.

If particles diffuse along \mathbf{x} during the allowed time (DiffTime), a signal attenuation is observed, compared to the signal with G=0.

Pulsed-Gradient Spin-Echo Sequence:

To achieve diffusion-weighting along a direction **x**, apply strong magnetic field gradients along **x**.

T2w Image No Diffusion-weighting (G=0) **S**₀

Diffusion-weighted Image S

Ratio

Removes T2w contrast

Diffusion contrast can be modulated by: A) Diffusion weighting: Gradient strength, Diffusion time

More diffusion contrast with higher b :) ...But less signal left - exponential decay :(

Diffusion contrast can be modulated by: **B) Gradient Direction x**

Orientation Contrast in dMRI

Orientation Contrast in dMRI

Because diffusion is anisotropic in WM, applying a gradient G along different directions **x**, gives different contrast in WM.

Anisotropic measurements in WM!

Roughly **Isotropic** in GM and CSF.

A Typical dMRI Protocol

Normally a few (at least one) b=0 volumes acquired, along with volumes at higher b (~1000 s/mm²).
Different gradient directions are applied for the high

b volumes.

- Images acquired with a Gradient along **x**, have contrast that is sensitive to diffusion of water molecules along **x**.

- When diffusion occurs, signal is attenuated compared to the one with no diffusion-weighting.

- In WM, measurements are anisotropic.

- In GM and CSF, measurements are roughly isotropic.

Diffusion Tensor Imaging - basic principles

- Diffusion in brain tissues
- Apparent Diffusion Coefficient
- Diffusion Tensor model
- Tensor-derived measures

Diffusion Tensor Imaging (DTI)

- Apply the diffusion tensor model to a set of dMRI images.

Scalar D (same |

Tensor D - DTI (D can

Diffusion Tensor Imaging (DTI)

Two dimensions Three dimensions for all directions) be different for different directions) ົກ

Diffusion Tensor Imaging (DTI)

Diffusion Tensor Model. In each voxel:

[Basser, Biophys J,1994], [Basser et al , J Magn Res, 1994]

The Elements of the Diffusion Tensor

$$\mathbf{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{bmatrix}$$

- Tensor is **symmetric** (6 unknowns)

- **Diagonal Elements** are proportional to the diffusion displacement variances (**ADCs**) along the three directions of the experiment coordinate system

-Off-diagonal Elements are proportional to the correlations (covariances) of displacements along these directions

N₃ (0, 2t**D**)

Why do we need a tensor?

Why do we need a tensor?

Why do we need a tensor?

 $\begin{bmatrix} D_x & D_{xy} \\ D_{xy} & D_y \end{bmatrix}$

The Diffusion Tensor Eigenspectrum

 $\mathbf{D} = \begin{bmatrix} D_{xx} & D_{xy} & D_{xz} \\ D_{xy} & D_{yy} & D_{yz} \\ D_{xz} & D_{yz} & D_{zz} \end{bmatrix}$ Once D is estimated, we get ADUS along a scanner's coordinate system. But we want ADCs along a local coordinate system in each other along the set of Once D is estimated, we get ADCs along the ADCs along a local coordinate system in each voxel, determined by the anatomy.

Diagonalize the estimated tensor in each voxel

$$\lambda_2 \mathbf{v}_2$$

$$\mathbf{D} = \begin{bmatrix} \mathbf{v_1} | \mathbf{v_2} | \mathbf{v_3} \end{bmatrix}^{\mathrm{T}} \begin{bmatrix} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{bmatrix} \begin{bmatrix} \mathbf{v_1} | \mathbf{v_2} | \mathbf{v_3} \end{bmatrix}$$
eigenvectors - $\mathbf{v_1}$ =direction of max diffusivity

eigenvalues: ADCs along v_1, v_2, v_3

The Diffusion Tensor Ellipsoid

The Diffusion Tensor Ellipsoid

Fractional Anisotropy (FA) ~ Eigenvalues Variance (normalised) Mean Diffusivity (MD) = Eigenvalues Mean

$$FA = \sqrt{\frac{3\sum_{i=1}^{3} (\lambda_i - \overline{\lambda})^2}{2\sum_{i=1}^{3} \lambda_i^2}}, \qquad FA \text{ in } [0,1]$$

$$MD = \frac{D_{xx} + D_{yy} + D_{zz}}{3} = \frac{\lambda_1 + \lambda_2 + \lambda_3}{3}$$

FA decrease/ MD increase has been associated in many studies with tissue breakdown (loss of structure).

Fractional Anisotropy changes in MS normal appearing white matter

FA decrease/ MD increase has been associated in many studies with tissue breakdown (loss of structure).

Fractional Anisotropy changes in MS normal appearing white matter

Different scenarios can have same effect on FA, MD

Transverse ADC $(\lambda_2 + \lambda_3)/2$

FA decrease in WM can be caused:

a) Decrease of longitudinal ADC. Axonal breakdown?

b) Increase of transverse ADC. Myelin breakdown?

But do not over-interpret your results. Always keep in mind that the DTI model is an oversimplification of reality

Tensor and FA in Crossing Regions

- In voxels containing two crossing bundles, FA is low and the tensor ellipsoid is pancake-shaped (oblate, planar tensor).

Consequences:

PDD not necessarily = direction of fibres FA changes difficult to interpret

Diffusion Tensor Ellipsoids

Estimates of Principal Fibre Orientation in WM

v₁ map Principal Diffusion Direction

Principal Diffusion Direction

Assumption!!

Direction of maximum

diffusivity in voxels with anisotropic profile is an estimate of the major fibre orientation.

Estimates of Principal Fibre Orientation in WM

Colour-coded v_1 map

Estimates of Principle Fibre Orientation in WM

Directional contrast in DTI

TBSS : Tract-Based Spatial Statistics

Robust "voxelwise" cross-subject stats on diffusion-derived measures

VBM-style Analysis of FA

- VBM [Ashburner 2000, Good 2001]
- Align all subjects' data to standard space
- Segment -> grey matter segmentation
- Smooth GM
- Do voxelwise stats (e.g. controls-patients)
- VBM on FA [Rugg-Gunn 2001, Büchel 2004, Simon 2005]
- Like VBM but no segmentation needed

Büchel 2004

VBM-style Analysis of FA

- Strengths
 - Fully automated & quick
 - Investigates whole brain
- Problems [Bookstein 2001, Davatzikos 2004, Jones 2005]
 - Alignment difficult; smallest systematic shifts between groups can be incorrectly interpreted as FA change
 - Needs smoothing to help with registration problems
 - No objective way to choose smoothing extent

Hand-placed voxel/ROI-based FA Comparison

labour-intensive, subjective, potentially inaccurate, doesn't investigate whole brain

Tractography-Based FA Comparison

- Method [Gong 2005, Corouge 2006]
 - Define a given tract in all subjects
 - Parameterise FA along tract
 - Compare between subjects
- Strength: correspondence issue hopefully resolved
- Problems
 - Currently requires manual intervention to specify tract
 - Hence doesn't investigate whole brain
 - Projection of FA onto tract needs careful thought

TBSS : Tract-Based Spatial Statistics

- Need: robust "voxelwise" cross-subject stats on DTI
- Problem: alignment issues confound valid local stats
- TBSS: solve alignment using alignment-invariant features:
- Compare FA taken from tract centres (via skeletonisation)

I. Use medium-DoF nonlinear reg to pre-align all subjects' FA (nonlinear reg: FNIRT)

2. "Skeletonise" Mean FA

3. Threshold Mean FA Skeleton

giving "objective" tract map

3. Threshold Mean FA Skeleton

giving "objective" tract map

3. Threshold Mean FA Skeleton

giving "objective" tract map

4. For each subject's warped FA, fill each point on the mean-space skeleton with nearest maximum FA value (i.e., from the centre of the subject's nearby tract)

5. Do cross-subject voxelwise stats on skeleton-projected FA and Threshold, (e.g., permutation testing, including multiple comparison correction)

subject 1

one skeleton voxel's data vector (to be fed into GLM)

TFCE for TBSS

controls > schizophrenics p<0.05 corrected for multiple comparisons across space, using randomise

cluster-based: cluster-forming threshold = 2 or 3

TFCE

Schizophrenia (Mackay)

TBSS & VBM show reduced FA in corpus callosum & fornix VBM shows spurious result in thalamus due to increased ventricles in schiz.

TBSS mean FA (controls) mean FA (schiz.) VBM

Multiple Sclerosis (Cader, Johansen-Berg & Matthews)

- 15 MS patients
- Yellow = -ve corr. FA vs EDSS
- Blue = group lesion probability (50%)
 Red = -ve corr. FA vs lesion volume Note reduced FA away from lesions

Multiple Sclerosis (Cader, Johansen-Berg & Matthews)

TBSS - Conclusions

- Attempting to solve correspondence/smoothing problems
- Less ambiguity of interpretation / spurious results than VBM
- Easier to test whole brain than ROI / tractography
- Limitations & Dangers
 - Interpretation of partial volume tracts still an issue
 - Crossing tracts?
- Future work
 - Use full tensor (for registration and test statistic)
 - Use other test statistics (MD, PDD, width)
 - Multivariate stats (across voxels and/or different diffusion measures) & discriminant (ICA, SVM)

...But what about dMRI distortions?

Susceptibility-induced (EPI) Distortions

Eddy Current-induced Distortions

eddy and topup - tools for processing of diffusion data

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "New" eddy features

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "New" eddy features

Well, it isn't very anatomically faithful

In fact, it isn't even internally consistent

In fact, it isn't even internally consistent

In fact, it isn't even internally consistent

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- "New" eddy features

An "off-resonance" field is a map of the difference between what we think the field is and what it really is.

It is all caused by an "off-resonance" field

Off-resonance field \Rightarrow Distortions or this Can sield this scanned in But this object this field

So there is clearly more to this story...

An off-resonance field is effectively a scaled voxel-displacement map.

If we know the imaging parameters we can do the translation.

And know what to expect

An off-resonance field is effectively a scaled voxel-displacement map.

If we know the imaging parameters we can do the translation.

BW/voxel = 10Hz, **p** = [0 1 0]

And know what to expect

So, an off-resonance field is effectively a scaled voxel-displacement map.

And if we know the imaging parameters we can do the translation.

BW/voxel = 8Hz, **p** = [-1 0 0]

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- "New" eddy features

- •There are two sources
- •The first is the object (head) itself.

(CT of) Human head

 $B_0 \odot$

PPMs

Must fulfil $\begin{cases} \nabla \mathbf{x} \mathbf{H} = \mathbf{0} \\ \nabla \mathbf{e} \mathbf{B} = \mathbf{0} \end{cases}$ (still)

- •There are two sources
- •The first is the object (head) itself.

•The second is caused by the diffusion gradient

Separate estimation of susceptibilityand eddy current-fields

So, what we need to estimate is

One of these per subject

One of these per volume

topup

eddy

FSL-tools:

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "New" eddy features

Given two images acquired with different phase-encoding

p=[0 1 0]

How topup works (very briefly)

And we know what the off-resonance field is

How topup works (very briefly)

How topup works (very briefly)

We can combine this with the PE information to get displacement maps

And use that to correct the distortions

p=[0 -1 0]

topup "guesses" a field...

p=[0 1 0]

How topup works (very briefly)

...calculates the displacement maps...

..."corrects" the images...

How topup works (very briefly)

p=[0 -1 0]

...and evaluates the results... And this is the crucial bit.

How topup works (very briefly)

p=[0 -1 0]

even better

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "New" eddy features

Worlds shortest course on image registration

Maximising/minimising an objective/cost-function

But it is not easy to register diffusion weighted images

- Each image has different distortions -> non-linear registration
- What is the reference image?

Zoltar -- The prediction maker

Given some data in, Zoltar will make a prediction what the data "should" be. The prediction for a given dwi will not be identical to the "input" for that dwi

I know this sounds crazy, but please trust me on this. (Zoltar is actually a Gaussian Process)

How eddy works: Loading step

Pick the first dwi

Use current estimates ofSuscECMP $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

0

To correct image

And load into prediction maker

How eddy works: Loading step

then the 2nd dwi

Use current estimates of
SuscECMP $\begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

To correct 2nd image

And load into prediction maker

Until we have loaded all dwis

How eddy works: Estimation step

Draw a prediction for first dwi

To get prediction in "observation space"

And compare to actual observation

How eddy works: Estimation step

Draw a prediction for 2nd dwi

Use current estimates of
SuscECMPMPMP0

And then we repeat the procedure for the next dwi ...

Invert

How eddy works

Under the hood of Zoltar

The signal is "modelled" in a data-driven fashion assuming that points close together on the unit sphere have similar signal.

Under the hood of Zoltar

The GP can model voxels with complicated anatomy while still being computationally convenient.

Shells with strong signal can help inform predictions in shells with poor signal

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "New" eddy features

Practicalities

•Our example data consists of:

- •N diffusion weighted volumes and n b=0 volumes
- •*b*=0 volumes interspersed
- •Two repetitions, phase-encode $L \rightarrow R$ and $R \rightarrow L$
- •Same diffusion table for both repetitions

Practicalities

Practicalities

And everything is of course affected by subject movement.

So, let's start with susceptibility

Extract the/some b=0 volumes using fslroi

topup --imain=my_b0s

topup --imain=my_b0s --datain=acqparams.txt

 $\begin{array}{ccccccc} -1 & 0 & 0 & 0.051 \\ -1 & 0 & 0 & 0.051 \\ 1 & 0 & 0 & 0.051 \\ 1 & 0 & 0 & 0.051 \end{array}$

Text file that we can call for example acqparams.txt

 $\begin{array}{ccccccc} -1 & 0 & 0 & 0.051 \\ -1 & 0 & 0 & 0.051 \\ 1 & 0 & 0 & 0.051 \\ 1 & 0 & 0 & 0.051 \end{array}$

acqparams.txt

And the tool for that is topup And finally we need to tell it where to put the results --out=my topup topup --imain=my_b0s --datain=acqparams.txt --config=b02b0.cnf my_topup_movpar.txt 0 0 0 0 0 0 Tells position of 2nd b=0 ► 0.72 -0.02 -0.07 0.002 0.000 0.002 scan relative the first 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004

Back to the full data-set

Now we want to correct the eddy current-distortions and subject movement in the whole data set.

my_topup_fieldcoef.nii

-1 0 0 0.051 -1 0 0 0.051 1 0 0 0.051 1 0 0 0.051 acqparams.txt

0 0 0 0 0 0 0.72 -0.02 -0.07 0.002 0.000 0.002 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004 my_topup_movpar.txt

The first thing we do is to collect all data in a single file using fslmerge and call it for example LR_RL

my_topup_fieldcoef.nii

-1 0 0 0.051 -1 0 0 0.051 1 0 0 0.051 1 0 0 0.051 acqparams.txt

0 0 0 0 0 0 0.72 -0.02 -0.07 0.002 0.000 0.002 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004 my_topup_movpar.txt

Inform eddy of acquisition parameters

Then we make a text file with one index for each volume, and call it for example indx.txt

my_topup_fieldcoef.nii

-1 0 0 0.051 -1 0 0 0.051 1 0 0 0.051 1 0 0 0.051 acqparams.txt

0 0 0 0 0 0 0.72 -0.02 -0.07 0.002 0.000 0.002 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004 my_topup_movpar.txt

Inform eddy of acquisition parameters

Inform eddy of acquisition parameters

. . .

And by referring into my_topup_movpar.txt it gives a starting guess for the relative subject position for each volume

111111111111111222

my topup fieldcoef.nii

-1 0 0 0.051 -1 0 0 0.051 1 0 0 0.051 1 0 0 0.051 acqparams.txt

0 0 0 0 0 0 0.72 -0.02 -0.07 0.002 0.000 0.002 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004 my_topup_movpar.txt ... LR RL

333333333333333444 ... indx.txt

And we also need to know the b-value and b-vector for each volume (same as for dtifit or bedpost).

my_topup_fieldcoef.nii

-1 0 0 0.051 -1 0 0 0.051 1 0 0 0.051 1 0 0 0.051 acqparams.txt

0 0 0 0 0 0 0.72 -0.02 -0.07 0.002 0.000 0.002 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004 1111... my_topup_movpar.txt indx.txt

And finally a binary mask that tells eddy which voxels are brain. Also the same that is used for dtifit/bedpost.

my_topup_fieldcoef.nii

-1 0 0 0.051 -1 0 0 0.051 1 0 0 0.051 1 0 0 0.051 acqparams.txt

0 0 0 0 0 0 0.72 -0.02 -0.07 0.002 0.000 0.002 0 -0.11 -0.33 0.002 0.013 -0.004 -0.70 -0.12 -0.43 0.002 0.014 -0.004 1111... my_topup_movpar.txt indx.txt indx.txt

And now we can run eddy

eddy --imain=LR_RL --acqp=acqparams.txt
--index=indx.txt --bvecs=bvecs
--bvals=bvals --mask=brain_mask
--topup=my topup --out=my eddy

And now we are ready for the most horrible command line in all of fsl

my_topup_fieldcoef.nii

•Data consists of:

- •N diffusion weighted volumes and n b=0 volumes
- •b=0 volumes interspersed, but 2–3 are up front.
- •2–3 b=0 volumes with opposing PE acquired just before the acquisition of the diffusion data set.

Extract one "good" *b*=0 volume for each PE-direction using fslroi

Collect them into one 4D file using fslmerge

 $-1 \ 0 \ 0 \ .051$ 1 0 0 0.051 Create text file acqparams.txt

-1 0 0 0.051 1 0 0 0.051 And run topup

topup --imain=my_b0s --datain=acqparams.txt
 --config=b02b0.cnf --out=my_topup

BS

A simpler (and perhaps more realistic) example

RS

A simpler (and perhaps more realistic) example

eddy --imain=LR_RL --acqp=acqparams.txt
--index=indx.txt --bvecs=bvecs
--bvals=bvals --mask=brain_mask
--topup=my_topup --out=my_eddy

And the eddy command is the same as before (N.B. you need to create brain_mask.nii.gz in the same way as before)

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "New" eddy features

HCP-data, 150 directions, b=3000, blip-up-blip-down

MGH-data, 198 directions, b=10000!

MGH-data, 198 directions, b=10000!

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
 - How does it cause distortions?
 - Where does it come from?
- Registering diffusion data
 - How topup works
 - How eddy works
- Practicalities
- Some results
- Quality control
- "New" eddy features

EDDY QC: single-subject reports

Biobank subject A

Volume-to-volume motion

Average abs. motion (mm)	0.81
Average rel. motion (mm)	0.88
Average x translation (mm)	0.17
Average y translation (mm)	-0.10
Average z translation (mm)	-0.02
Average x rotation (deg)	0.07
Average y rotation (deg)	0.17
Average z rotation (deg)	0.15
a	

Outliers

Total outliers (%)	0.11
Outliers (b=1000 s/mm ²)	0.22
Outliers (b=2000 s/mm ²)	0.00
Outliers (PE dir=[0. 1. 0.])	0.00
Outliers (PE dir=[01. 0.])	0.11

Within-volume motion

Avg std x translation (mm)	0.02
Avg std y translation (mm)	0.11
Avg std z translation (mm)	0.04
Avg std x rotation (deg)	0.05
Avg std y rotation (deg)	0.05
Avg std z rotation (deg)	0.06

Biobank subject B

Volume-to-volume motion

	Average abs. motion (mm)	1.86
	Average rel. motion (mm)	1.24
	Average x translation (mm)	-0.43
	Average y translation (mm)	0.39
	Average z translation (mm)	0.69
	Average x rotation (deg)	0.50
	Average y rotation (deg)	0.49
	Average z rotation (deg)	-0.55
0		

Within-volume motion

	Avg std x translation (mm)	0.08
	Avg std y translation (mm)	0.22
	Avg std z translation (mm)	0.13
	Avg std x rotation (deg)	0.15
	Avg std y rotation (deg)	0.09
-	Avg std z rotation (deg)	0.11

Outliers

Total outliers (%)	2.86
Outliers (b=1000 s/mm ²)	4.69
Outliers (b=2000 s/mm ²)	1.13
Outliers (PE dir=[0. 1. 0.])	2.55
Outliers (PE dir=[01. 0.])	2.66

EDDY QC: group report

Data quality illustration

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
- Registering diffusion data
- Practicalities
- Some results
- "New" eddy features
 - Movement-induced dropout
 - Intra-volume motion
 - Susceptibility-by-movement

Movement induced dropout

Image encoding

If there is movement during this part...

this

can turn to this

How are the predictions made?

A Gaussian process that simply assumes that the signal varies smoothly as we move in Q-space Very few assumptions. Hyperparameters calculated by leave-one-out.

$$\hat{y}_{\mathbf{g}} = K(\mathbf{g}, \mathbf{G}) \left[K(\mathbf{G}, \mathbf{G}) + \sigma^2 \mathbf{I} \right]^{-1} \mathbf{y}$$

Outlier detection

Observed data

Remember that we

do all comparisons in

observation space.

Observed - predicted

This allows us to calculate the per-slice mean difference between observation and prediction

Outlier detection

We can calculate the mean difference for every slice in every volume and get an empirical distribution that we can convert to z-scores

We can define an outlier slice as one with a z-score above an (arbitrary) threshold. We then have a choice of reporting outliers and/or replacing them with their predictions.

Worst slice

Outlier detection

Original data

Data after replacement

Outliers for a very still volunteer. Outliers mainly in basal slices.

How to make the "right" prediction

The outlier skews the predictions, but is still recognisable as an outlier

Remove the outlier and recalculate the "model". The prediction is taken from this new "model".

eddy revisited

Norwegian data. 32 directions. Hundreds of children.

Eight year old who gets tired towards the end of scanning

After outlier detection and replacement by eddy

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
- Registering diffusion data
- Practicalities
- Some results
- "New" eddy features
 - Movement-induced dropout
 - Intra-volume motion
 - Susceptibility-by-movement

One of the (possibly naive) assumptions of most movement correction is that any movement is instantaneous and occurs between the acquisition of consecutive volumes.

This is the brain we set out to image

One of the (possibly naive) assumptions of most movement correction is that any movement is instantaneous and occurs between the acquisition of consecutive volumes.

This is the brain we set out to image

And here we have acquired the first slice

One of the (possibly naive) assumptions of most movement correction is that any movement is instantaneous and occurs between the acquisition of consecutive volumes.

But the subject moves

This is the brain we set out to image

So the brain is offset in the second slice

One of the (possibly naive) assumptions of most movement correction is that any movement is instantaneous and occurs between the acquisition of consecutive volumes.

But the subject moves

This is the brain we set out to image

And even more so in the third slice

One of the (possibly naive) assumptions of most movement correction is that any movement is instantaneous and occurs between the acquisition of consecutive volumes.

But the subject moves

This is the brain we set out to image

And more ...

One of the (possibly naive) assumptions of most movement correction is that any movement is instantaneous and occurs between the acquisition of consecutive volumes.

But the subject moves

This is the brain we set out to image

... and more ...

One of the (possibly naive) assumptions of most movement correction is that any movement is instantaneous and occurs between the acquisition of consecutive volumes.

etc.

This is the brain we set out to image

- This is known as the "slice-to-vol" problem or the "intravolume movement" problem.
- The new version of eddy addresses this problem.
- It estimates the slice wise movement through the same Gaussian Process based forward model.

Original data

Original data

After correction without outlier correction

Original data

After correction without outlier correction

After correction with outlier replacement

Original data

After correction without outlier correction

After correction with outlier replacement

After intravolume movement correction.

Highlighting the difference between just OLR and OLR combined with S2V correction

Outline of the talk

- What is the problem with diffusion data?
- Off-resonance field
- Registering diffusion data
- Practicalities
- Some results
- "New" eddy features
 - Movement-induced dropout
 - Intra-volume motion
 - Susceptibility-by-movement

Some data with lots of movement

Some data with lots of movement, aligned with eddy

Some data with lots of movement, aligned with eddy

Why is that then?

Motion-induced Magnetic Field Changes Inside the Brain

Jiaen Liu¹, Jacco de Zwart¹, Peter van Gelderen¹, and Jeff Duyn¹

Fig. 1 Changes of field maps in four different positions relative to the field map in the reference position obtained under the "phantom shim" setting. The unit of the field maps is Hz.

Fig. 2 Changes of field maps in four different positions relative to the field map in the reference position obtained under the "subject shim" setting. The unit of the field maps is Hz.

ISMRM Honolulu

In case you think that was exaggerated

Problematic HCP subject.

Why is that then?

Richard Bowtell

Will field shifts due to head rotation compromise motion correction?

Aleksandra Sulikowska¹, Samuel Wharton¹, Paul M Glover¹, and Penny A Gowland¹ ¹Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, Nottingham, Nottinghamshire, United Kingdom

Fig. 3. Figure showing mean field shift in the VOIs during pitch rotations.

Fig. 4. Figure showing mean field shift in the VOIs during roll rotations.

Fig. 2. B_0 field difference maps for 2 head orientations, TOP: pitch θ =7.87 deg, BOTTOM: roll Φ =7.13 deg. Squares indicate VOIs (red: volumes 1-4; blue: volumes 5-8). Grey scale= -5 Hz to 5 Hz.

So, maybe we can use a low order Taylor expansion

We need a forward model for the observed changes

•

We need a forward model for the observed changes

And then to invert that model to find the unknowns

And now things look a lot better

After

Before

With Susc-by-move

And this is what the estimated derivative fields look like

And the problematic HCP subject

