

Tract-Density Imaging

[Calamante Neurolmage 2010]

Single HCP subject TDI @ 0.2mm

Diffusion Tractography

Overview

- Goal of tractography
- Estimating Fibre Orientations BEDPOSTX
- Probabilistic Tractography PROBTRACKX
- ProbtrackX outputs
- Tractography limitations

Overview

• Goal of tractography

- Estimating Fibre Orientations BEDPOSTX
- Probabilistic Tractography PROBTRACKX
- ProbtrackX outputs
- Tractography limitations

What is Tractography?

Post-mortem dissection of some white matter fibre bundles (tracts)

Williams, Gluhbegovic, and Jew, "The Human Brain`; Dissections of the Real brain", Virtual Hopstital, Universitoy of Iowa, 1997

Tractography

The post-imaging reconstruction of fibre bundles/ anatomical connections in the brain using a set of DW images. (in-vivo virtual dissection)

DTI tractography

v₁ map Principal Diffusion Direction

Principal Diffusion Direction

SEC III

Assumption:

Direction of maximum diffusivity (in anisotropic voxels) is an <u>estimate</u> of the major fibre orientation.

DTI tractography

[Catani et al, NeuroImage, 2003]

Problems of scale

Ohno et al. 2013

Connectivity - Why do we care?

- White matter (dys)connectivity is thought to form the substrate for many different neurological and psychiatric disorders.

Connectivity - Why do we care?

- Tractography provides non-invasive localisation and semi-quantitative biomarkers

- Connections constrain function

- Different regions have distinct connectivity fingerprints

Passingham et al. 2002

Tractography outputs

Known white matter tracts

What does tractography offer?

- + non-invasive
- + in-vivo
- + whole brain
- + can address new questions

Lawes et al. 2008

...But

- low resolution (large bundles)
- indirect (diffusion paths)
- error prone (MRI is noisy)
- difficult to interpret quantitatively

Overview

- Goal of tractography
- Estimating Fibre Orientations BEDPOSTX
- Probabilistic Tractography PROBTRACKX
- ProbtrackX outputs
- Tractography limitations

DTI tractography

v₁ map Principal Diffusion Direction

Principal Diffusion Direction

SEC III

Assumption:

Direction of maximum diffusivity (in anisotropic voxels) is an <u>estimate</u> of the major fibre orientation.

But is WM always coherently organised within a voxel?

Unfortunately not, complex fibre patterns (e.g. crossings) are very common at the voxel scale.

Williams, Glubbegovic, and Jew, "The Human Brain`; Dissections of the Real brain", Virtual Hopstital, Universitoy of Iowa, 1997

How good is the DTI Model in regions with crossing fibres?

- In voxels containing two crossing bundles, the tensor ellipsoid is pancake-shaped (oblate, planar tensor).
- In voxels containing three crossing bundles, the tensor ellipsoid is spherical.
- In these areas, DTI \boldsymbol{v}_1 is meaningless.

Uncertainty on DTI Fibre Orientation Estimates

Repeat an acquisition many times and obtain the variability in \mathbf{v}_1 from the different datasets.

Cones of uncertainty on DTI v_1

Jones, 2002

Do we have to use the DTI model to estimate orientations? Not really, many models exist

Ball & Sticks Model Unlike the DT model, it can represent many orientations

- Anisotropic tensors (sticks) with isotropic background (ball)
- Fibre Orientations modelled explicitly and separated from isotropic partial volumes

How can we estimate uncertainty?

- Remember ... a long time ago in the world of fMRI ...
- We estimated two things:
 - A cope file (the parameters)
 - A varcope file (uncertainty in these parameters)
- We estimated our parameters, and their uncertainty from a single dataset.
- Can we do a similar thing with parameters estimated for the ball & sticks model?
 - In the context of GLM, we have analytic formulas
 - For diffusion (especially orientations) we don't

Markov Chain - Monte Carlo (MCMC) Sampling

Ball & Sticks Model Selection

- Model selection problem: One, two or more fibres within a voxel?
- Automatic Relevance Determination: Only estimate complexity that is supported by the data

Modelling Complex Fibre Architectures Automatic Relevance Determination (A.R.D.)

 No benefit from including a 2nd fibre => 2nd volume fraction goes to zero

Measured Signal

Modelling Complex Fibre Architectures Automatic Relevance Determination (A.R.D.)

- After running BedpostX all voxels will have estimated parameters for the maximum number of sticks requested.
- But due to ARD, the sticks that are not supported in a voxel will have an almost zero volume fraction.
- We use a threshold (e.g. >5%) to exclude sticks with tiny volume fraction.

Ball & Sticks Orientations

All sticks, with secondary ones thresholded ($f_n > 5\%$)

DTI vs Ball & Sticks Orientations

DTI

Ball & Sticks

A large portion of the WM supports crossing fibres

Coherence in orientations shows that we are not over-fitting (the ARD works)

Multi-Shell Diffusion Acquisitions Why bother?

Higher b value gives us more angular contrast!!!

Multi-Shell Diffusion Acquisitions Why bother?

But SNR goes down very quickly with b...

Generalised Ball & sticks Model Gets best of both worlds

- Multi-shell model (or model=2) in Bedpostx options.
- Allows representation of multiple diffusivities within a voxel (rather than just one).
- More accurate model for multi-shell data & partial volume effects.

Human Connectome Project Data

*Jbabdi, Sotiropoulos et al, MRM 2012 * Sotiropoulos, Jbabdi et al, NeuroImage 2013
Faster bedpostx on GPUs

Hernandez et al, Plos One 2013

Overview

- Goal of tractography
- Estimating Fibre Orientations BEDPOSTX
- Probabilistic Tractography PROBTRACKX
- ProbtrackX outputs
- Tractography limitations

DTI Streamline Tractography

Formally, we solve numerically the differential equation:

Mori S, Neuron 2006

DTI Streamline Tractography

But When to Stop? Heuristics to avoid error propagation. + Knowledge of the anatomy

Curvature Change Threshold: To avoid crossings of boundaries and very bended trajectories, impose a smoothness criterion.

Anatomical criteria (e.g. reach grey matter)

Streamline tractography can dissect major bundles

arcuate fasciculus

corpus callosum

uncinate fasciculus

cingulum bundle

inferior fronto-occipital

corona radiata

inferior longitudinal fasciculus

fornix

cerebellar tracts

DTI Streamline Tractography Summary

- Use the major axis of the DTI ellipsoid as a fibre orientation estimate.

- Propagate curves within this vector field until empirical thresholds are exceeded.

- Major fibre bundles can be reconstructed.

But is WM always coherently organised within a voxel?

Unfortunately not, complex fibre patterns (e.g. crossings) are very common at the voxel scale.

Williams, Glubbegovic, and Jew, "The Human Brain`; Dissections of the Real brain", Virtual Hopstital, Universitoy of Iowa, 1997

Streamlining reproducibility

Repeat an acquisition many times and repeat streamline tracking.

Due to uncertainty in v_1 , curves will not perfectly overlap

Create a map that shows the degree of overlap across the trials.

Streamlines from a single dataset

Map that shows where results across datasets overlap

Low Reproducibility

High Reproducibility

- We normally have one dataset per subject, not many.
- Probabilistic Tractography as a two-step process:

a) Use DWI data and a model to infer a fibre orientation **and its uncertainty** in each voxel.

b) Use the estimates and the uncertainty to build a path probability map to a seed.

Probabilistic tractography

• But now, we no longer have a single direction at each voxel. How can we do tractography?

'Streamlining'

Probabilistic tractography Behrens et al, 2003, Parker et al. 2003, Hagmann et al 2003, Jones et al. 2004

Probabilistic Tractography - Propagating the Uncertainty

- Propagate N streamlines from a seed, but for each propagation step choose randomly an orientation from the underlying distribution.
- Build a spatial distribution of curves that mimics the overlapped results from multiple deterministic tracking on multiple scans

Probabilistic Tractography - Propagating the Uncertainty

Behrens et al, 2003 Parker et al, 2003

Define the degree of overlap at each location B, as:

M:number of streamlines that go through B N: total streamlines generated from A

This is the probability of a curve starting at A and going through B.

Probabilistic Tractography - Propagating the Uncertainty

- Can now propagate through isotropic regions (e.g. GM).
- Do not need to stop when anisotropy is low, as in deterministic tracking.
 - The high uncertainty will be reflected in the probability map.

-Still impose a curvature threshold to avoid swirled trajectories.

Probabilistic Tractography in Multi-Fibre Fields

Behrens et al, 2003, Parker et al. 2003, Hagmann et al 2003, Jones et al. 2004

Parker & Alexander 2003, Behrens et al, 2007

When multiple fibre orientations exist in a voxel, choose the one that is most compatible with the incoming trajectory.

Probabilistic Tractography in Multi-Fibre Fields Examples

Cortico-spinal tracts. 9 subjects Linternal capsule ----- Primary motor cortex

Behrens et al, 2007

one fibre

two fibres

* If one fibre is modelled and we track through a crossing, a) we may not make it through the crossing, b) if we make it, the connectivity index will be relatively low.

one fibre

two fibres

Path Probability Map

- Recall that it assesses how <u>reproducible</u> results are

- Often called "connection probability", "connectivity index", "connectivity strength". But it does not quantify how strong a connection is...

- Rather, how robust it is against noise/uncertainty

Deterministic Tractography

Probabilistic Tractography

Low Probability

High Probability

- Needs apart from orientation estimates, an estimate of their uncertainty. Does not need to be the ball and stick model, the DTI model can be used instead!

- Propagate streamlines repeatedly from a seed, but the orientation field is no longer deterministic. In each propagation step choose randomly an orientation from the underlying distribution.

- A connection probability value>=0 can be obtained from a seed A to any voxel in the brain B. This assesses the reproducibility of the path from A to B, along which water molecules preferably diffuse.

Overview

- Goal of tractography
- Estimating Fibre Orientations BEDPOSTX
- Probabilistic Tractography PROBTRACKX
- ProbtrackX outputs
- Tractography limitations

ProbtrackX outputs

Known white matter tracts

High Probability

 Because of the uncertainty propagation, the spatial distribution of paths is often very wide.

Low Probability

Fdt GUI:

 Once a seed is specified, prior anatomical knowledge can be imposed to assist the dissection of a specific tract.

Waypoint ROIs If a curve does not go through, it is discarded.

Exclusion ROI If a curve goes through, it is discarded.

Termination ROI If a curve goes through, it is terminated.

Cortico-spinal tract

Seed: M1, hand area

No ROIs

Cortico-spinal tract

Seed: M1, hand area

Exclusion: Mid-Sagittal plane

Cortico-spinal tract

Seed: M1, hand area

Waypoint: Internal Capsule

Corpus Callosum

Seed: dorsal PMC

No ROIs

Corpus Callosum

Seed: dorsal PMC

Waypoint: Corpus Callosum

Surfaces as constraints

No surface constraint

Surface as termination mask

How to use masks in standard space?

- Register to standard space
 - b0 or FA -> TIw -> standard TIw
 - FA -> standard FA
- **Don't** transform masks -> diffusion space
- **Don't** transform diffusion -> standard space

Tell probtrackX about transform:

PROBTRACKX Probabilistic tracking 📃	
Data Options	
BEDPOSTX directory	
 nonlinear Select Seed to diff transform Select diff to Seed transform surface 	
Optional Targets Waypoints masks Exclusion mask Termination mask Classification targets	
Output directory:	
Go Exit Help	

XTRACT: generating tracts for you

https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/XTRACT

Connectivity - Why do we care?

- Tractography provides non-invasive localisation and semi-quantitative biomarkers

ProbtrackX outputs

Known white matter tracts

Resulting matrix:

	?	?	?
?		?	?
?	?		?
?	?	?	

Connectivity between ROIs

- Seed from blue
- Other ROIs are waypoints
- Fill first row of matrix Resulting matrix:

Target ROIs

Connectivity between ROIs

- Seed from yellow
- Other ROIs are waypoints
- Fill first row of matrix Resulting matrix:

Target ROIs

Connectivity between ROIs

- Seed from green
- Other ROIs are waypoints
- Fill first row of matrix Resulting matrix:

Target ROIs

Connectivity between ROIs

- Seed from copper
- Other ROIs are waypoints
- Fill first row of matrix Resulting matrix:

Connectivity between ROIs

		Fdt GUI:
PROB	TRACKX Pro	babilistic tracking 🦳
Data	Options	
See Mu Ma	POSTX direct ed Space Itiple masks asks list	ory /Users/ndcn0236/Work/projects/fsl_course/n 🔄
R	101 2 101 3 101 4	V
	Add Image	Remove Image Load List Save List
	Seed space is	s not diffusion
	tional Targets Waypoints ma Exclusion mas Fermination n ut directory:	asks sk
	Go	Help

Seed voxels

Resulting matrix:

Seed voxels

Resulting matrix:

Seed voxels

Resulting matrix:

Seed voxels

Resulting matrix:

Target ROIs

etc...

no contrast on conventional MRI

$VL \rightarrow M1$

MD -> PFC

Behrens et al, 2003 (probabilistic tractography)

Rouiller et al, 1998 (BDA anterograde tracing)

Prior cortical parcelaltion

Resulting matrix: Target ROIs

Prior cortical parcelaltion

Resulting matrix: Target ROIs

Prior cortical parcelaltion

M1 PMC z=6 PFC z=7 OCC z=7 OCC z=7 OCC z=7 OCC z=2

Resulting matrix: Target ROIs

Prior cortical parcelaltion

Hard thalamic parcellation

DBS for treatment of tremor in Parkinsons

Pouratian et al. JNS 2011

Fdt GUI: PROBTRACKX Probabilistic tracking -Options Data BEDPOSTX directory /Users/ndcn0236/Work/projects/fsl course/ni -Seed Space Single mask 💻 Seed Image/Surface: ROI 4 Seed space is not diffusion Optional Targets Waypoints masks Exclusion mask Termination mask Classification targets -Targets list ROI 1 **ROI 3** Remove Image Add Image Load List Save List Output directory: <u>a</u> Exit. Help Go

Connectivity between voxels

ROI 2 voxels

ROI 1 voxels

?

?

?

?

7

?

?

?

• •

Connectivity between voxels

Data	Options
-Ba	sic Options
Nu	mber of samples 5000 🌻
Cu	rvature threshold 0.2 🚔
	Verbose
	Loopcheck
D A	dvanced Options
ÞV	Vaypoint Options
\bigtriangledown N	fatrix Options
	Matrix1: Seed x Seed Matrix
	Matrix2: Seed x Mask2 Matrix
	🖬 Matrix3: Mask1 x Mask2 Matrix

Dense connectome

Cortical seed (matrix1)

WM seed (matrix3)

Cortical vertices

Medial area 6 contains two distinct regions with very different connectivity: SMA and Pre-SMA

Can we define a border based on a change in connectivity profile?

Seed voxels

correlation matrix clustering algorithm

•Clusters in the re-ordered matrix represent seed voxels with similar connectivity

•Breaks between clusters represent where connectivity patterns change

Johansen-Berg et al. 2004

Substantia Nigra Menke 2010

Lateral pre-motor Tomassini 2007

Striatum Tziortzi 2013

Broca's area Klein 2007

Insular cortex Cerliani 2012

Medial prefrontal Johansen-Berg 2004

Thalamus Behrens 2003

Amygdala Saygin 2011

Occipital cortex Thiebaut de Schotten 2013

ProbtrackX outputs

Known white matter tracts

Overview

- Goal of tractography
- Estimating Fibre Orientations BEDPOSTX
- Probabilistic Tractography PROBTRACKX
- ProbtrackX outputs
- Tractography limitations

What is a quantitative measure of connectivity?

- Number of axons connecting 2 areas?
- Proportion of axons from a seed that reach a target?
- "Integrity" of the connecting white matter ... –Effective conductivity?
 - -Degree of myelination?
 - -Packing density?
- What are we measuring?

-The probability that the **dominant** path through the <u>diffusion field</u> passes through this region.

- They may reflect "Connection Strength"
- But they do also reflect other uninteresting factors, such as:

<u>Connection length</u>: Longer connections have smaller probability than shorter ones

<u>Geometric complexity</u>: Probabilities of connections that go through regions of complex structure will be smaller than connections than go through more coherent regions

- Cross-subject comparison of the same tract is more meaningful than comparing different tracts

Can we trust tractography?

Is the direction of least hindrance to diffusion a good proxy for fibre orientation?

mapping between axon geometry and diffusion profile can be ambiguous

White matter organisation can be surprising

Whole mouse brain Electron Microscopy! Mikula Binding Denk, Nature Methods 2012

Can we trust tractography?

In the white matter: jumping between tracts

Near the cortex ambiguities/biases

Jbabdi & Johansen-Berg (2011)

Maier-Hein et al. (Nat. Comm., 2017) Number invalid bundles (IB)

Validation: comparison with classical chemical tracing

point of entry within the CB

DBS for treatment of tremor in Parkinsons

Pouratian et al. JNS 2011

The Human Connectome Project www.humanconnectome.org

That's all folks

