Inference

how surprising is your statistic? (thresholding)

But ... can I trust it?
Outline

• Null-hypothesis and Null-distribution
• Multiple comparisons and Family-wise error
• Different ways of being surprised
 • Voxel-wise inference (Maximum z)
 • Cluster-wise inference (Maximum size)
• Parametric vs non-parametric tests
• Enhanced clusters
• FDR - False Discovery Rate
Outline

• Null-hypothesis and Null-distribution
• Multiple comparisons and Family-wise error
• Different ways of being surprised
 • Voxel-wise inference (Maximum z)
 • Cluster-wise inference (Maximum size)
• Parametric vs non-parametric tests
• Enhanced clusters
• FDR - False Discovery Rate
The task of classical inference

• Given some data we want to know if (e.g.) a mean is different from zero or if two means are different

> 0 ?

Different?
Tools of classical inference

1. A null-hypothesis

Typically the opposite of what we actually “hope”, e.g.

There is **no** effect of treatment: $\mu = 0$

There is **no** difference between groups: $\mu_1 = \mu_2$
Tools of classical inference

1. A null-hypothesis
2. A test-statistic

Assesses “trustworthiness”
Tools of classical inference

1. A null-hypothesis
2. A test-statistic

Assesses “trustworthiness”

A \(t \)-statistic reflects precisely this

\[
t = \sqrt{n} \frac{x_1 - x_2}{\sqrt{\sigma^2}}
\]

Large difference: Trustworthy

Small variability: Trustworthy

Many measurements: Trustworthy
Tools of classical inference

1. A null-hypothesis
2. A test-statistic

Or expressed in GLM lingo

\[
\begin{align*}
\begin{bmatrix}
\hat{\beta}_1 \\
\hat{\beta}_2
\end{bmatrix}
&=
\begin{bmatrix}
\beta_1 \\
\beta_2
\end{bmatrix}
\begin{bmatrix}
\bar{x}_1 \\
\bar{x}_2
\end{bmatrix}

\end{align*}
\]

Large difference: Trustworthy
Small variability: Trustworthy
Many measurements: Trustworthy

\[
t = \frac{c^T \hat{\beta}}{\sqrt{\sigma^2} \sqrt{c^T (X^T X)^{-1} c}}
\]

\[
\bar{x}_1 - \bar{x}_2
\]
Tools of classical inference

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

Let us assume there is no difference, i.e. the null-hypothesis is true.

We might then get these data:

\[t = \frac{c^T \hat{\beta}}{\sigma^2 \sqrt{c^T (X^T X)^{-1} c}} \]

\[\sigma^2 = 0.71 \]

\[c^T \hat{\beta} = 1.17 \]

\[t = 2.19 \]
Tools of classical inference

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

We might then get these data

\[t = \frac{c^T \hat{\beta}}{\sqrt{\sigma^2} \sqrt{c^T (X^T X)^{-1} c}} \]

\[\sigma^2 = 0.71 \]

\[c^T \hat{\beta} = 1.17 \]

\[t = 2.19 \]
Tools of classical inference

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

\[t = \frac{c^T \hat{\beta}}{\sqrt{\sigma^2} \sqrt{c^T (X^T X)^{-1} c}} \]

or we could have gotten these

\[c^T \hat{\beta} = -0.37 \]

\[\sigma^2 = 1.28 \]

\[t = \frac{-0.51}{0.51} \]

\[c^T \hat{\beta} = \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + e \]
Tools of classical inference

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

\[
t = \frac{c^T \hat{\beta}}{\sqrt{\sigma^2 \sqrt{c^T (X^T X)^{-1} c}}}
\]

\[
t = 0.49
\]

\[
s^2 = 1.01
\]

\[
c^T \beta = 0.31
\]

\[
\text{maybe these}
\]
Tools of classical inference

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

or perhaps these

\[t = \sqrt{\sigma^2} \sqrt{c^T (X^T X)^{-1} c} \]

\[c^T \beta = 1.22 \]

\[\sigma^2 = 0.78 \]

Constant

\[t = 2.19 \]
Tools of classical inference

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

\[t = \frac{c^T \hat{\beta}}{\sqrt{\sigma^2} \sqrt{c^T (X^T X)^{-1} c}} \]

\[\sigma^2 = 0.44 \]

\[c^T \hat{\beta} = -0.69 \]

\[t = -1.66 \]
Tools of classical inference

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

And if we do this till the cows come home
Tools of classical inference

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

So, why is this helpful?
Tools of classical inference

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

Well, it for example tells us that in ~1% of the cases $t > 3.00$, even when the null-hypothesis is true.
Tools of classical inference

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

Or that in $\sim 5\%$ of the cases $t > 1.99$.

When the null-hypothesis is true.
Tools of classical inference

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

And best of all: This distribution is known i.e. one can calculate it. Much as one can calculate sine or cosine
Tools of classical inference

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

And best of all: This distribution is known i.e. one can calculate it. Much as one can calculate sine or cosine

Provided that $e \sim N(0, \sigma^2)$
An example experiment

1. A null-hypothesis
 \[H_0: \overline{x}_1 = \overline{x}_2, \ H_1: \overline{x}_1 > \overline{x}_2 \]

2. A test-statistic
3. A null-distribution

So, with these tools let us do an experiment
An example experiment

1. A null-hypothesis
 \(H_0: \bar{x}_1 = \bar{x}_2 \), \(H_1: \bar{x}_1 > \bar{x}_2 \)

2. A test-statistic
 \[t_8 = 2.64 \]

3. A null-distribution

So, with these tools let us do an experiment

\[
\begin{bmatrix}
\beta_1 \\
\beta_2
\end{bmatrix} = \frac{c^T \hat{\beta}}{\sqrt{\sigma^2 \sqrt{c^T (X^T X)^{-1} c}}} = \frac{1.53}{\sqrt{0.85 \times 0.4}} = 2.64
\]
An example experiment

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

So, with these tools let us do an experiment

If the null-hypothesis is true, we would expect to have a $\sim1.46\%$ chance of finding a t-value this large or larger.

- $H_0: \bar{x}_1 = \bar{x}_2$, $H_1: \bar{x}_1 > \bar{x}_2$
- $t_8 = 2.64$
An example experiment

1. A null-hypothesis
2. A test-statistic
3. A null-distribution

So, with these tools let us do an experiment

\[H_0: \bar{x}_1 = \bar{x}_2, \quad H_1: \bar{x}_1 > \bar{x}_2 \]

\[t_8 = 2.64 \]

\[t_8 = 2.64^* \]

There is \(\sim 1.46\% \) risk that we reject the null-hypothesis (i.e. claim we found something) when the null is actually true. We can live with that (well, I can).
False positives/negatives

• I am sure you have all heard about “false positives” and “false negatives”.
• But what does that actually mean?
False positives/negatives

• I am sure you have all heard about “false positives” and “false negatives”.
• But what does that actually mean?
• We want to perform an experiment and as part of that we define a null-hypothesis, e.g. $H_0 : \mu = 0$
• Now what can happen?
False positives/negatives

- I am sure you have all heard about “false positives” and “false negatives”.
- But what does that actually mean?
- We want to perform an experiment and as part of that we define a null-hypothesis, e.g. $H_0 : \mu = 0$
- Now what can happen?

\[
\begin{align*}
\text{\(H_0\ \text{is true}\)} & \quad \text{True state of affairs} \\
\text{\(H_0\ \text{is false}\)} & \\
\end{align*}
\]
False positives/negatives

• I am sure you have all heard about “false positives” and “false negatives”.
• But what does that actually mean?
• We want to perform an experiment and as part of that we define a null-hypothesis, e.g. \(H_0 : \mu = 0 \)
• Now what can happen?

\[
\begin{align*}
H_0 \text{ is true} & \\
H_0 \text{ is false} & \\
\text{True state of affairs} & \\
\text{We don’t reject } H_0 & \\
\text{We reject } H_0 & \\
\text{Our decision} &
\end{align*}
\]
False positives/negatives

\[
\begin{align*}
H_0 \text{ is true} & \quad \{ \text{True state of affairs} \\
H_0 \text{ is false} & \quad \{ \text{Our decision} \\
\text{We don’t reject } H_0 & \quad \{ \\
\text{We reject } H_0 & \quad \}
\end{align*}
\]

\[
\begin{array}{cc}
\text{We don’t reject } H_0 & \text{We reject } H_0 \\
\hline
H_0 \text{ is true} & \null \\
H_0 \text{ is false} & \null
\end{array}
\]
False positives/negatives

H_0 is true \{ True state of affairs
H_0 is false \}

We don’t reject H_0 \{ Our decision
We reject H_0 \}

<table>
<thead>
<tr>
<th>H_0 is true</th>
<th>H_0 is false</th>
</tr>
</thead>
<tbody>
<tr>
<td>We don’t reject H_0</td>
<td>We reject H_0</td>
</tr>
<tr>
<td>😊</td>
<td>😊</td>
</tr>
</tbody>
</table>
False positives/negatives

\[H_0 \text{ is true} \] \{ \text{True state of affairs} \}
\[H_0 \text{ is false} \]

We don’t reject \(H_0 \) \{ Our decision \}
We reject \(H_0 \)

<table>
<thead>
<tr>
<th>(H_0 \text{ is true})</th>
<th>(H_0 \text{ is false})</th>
</tr>
</thead>
<tbody>
<tr>
<td>We don’t reject (H_0)</td>
<td>False positive</td>
</tr>
<tr>
<td>We reject (H_0)</td>
<td>False negative</td>
</tr>
</tbody>
</table>
False positives/negatives

H_0 is true \{ \begin{align*}
\text{True state of affairs} \\
\text{We don’t reject } H_0 \\
\text{We reject } H_0
\end{align*} \}

H_0 is false \{ \begin{align*}
\text{Our decision} \\
\text{We don’t reject } H_0 \\
\text{We reject } H_0
\end{align*} \}

<table>
<thead>
<tr>
<th></th>
<th>We don’t reject H_0</th>
<th>We reject H_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>H_0 is true</td>
<td>😊</td>
<td>False positive Type I error</td>
</tr>
<tr>
<td>H_0 is false</td>
<td>False negative Type II error</td>
<td>😊</td>
</tr>
</tbody>
</table>
Outline

• Null-hypothesis and Null-distribution
• Multiple comparisons and Family-wise error
• Different ways of being surprised
 • Voxel-wise inference (Maximum z)
 • Cluster-wise inference (Maximum size)
• Parametric vs non-parametric tests
• Enhanced clusters
• FDR - False Discovery Rate
Multiple Comparisons

- In neuroimaging we typically perform *many* tests as part of a study.
What happens when we apply this to imaging data?

z-map where each voxel $\sim N$.
Null-hypothesis true everywhere, i.e.
NO ACTIVATIONS

z-map thresholded at 1.64

16 clusters
288 voxels
$\sim 5.5\%$ of the voxels

That's a LOT of false positives
Italians doing maths: The Bonferroni correction

Bonferroni says threshold at α divided by # of tests

5255 voxels

$0.05/5255 \approx 10^{-5}$

No false positives. Hurrah for Italy!
But ... doesn’t 5.65 sound very high?

Largest observed value

Bonferroni threshold

Observed values in the z-map

Too lenient

0.05

1.64

Too harsh

10^{-5}

5.65

So what do we want then?
Let’s say we perform a series of identical studies.

Each z-map is the end result of a study.

Let us further say that the null-hypothesis is true.

We want to threshold the data so that only once in 20 studies do we find a voxel above this threshold.

But how do we find such a threshold?
Outline

• Null-hypothesis and Null-distribution
• Multiple comparisons and Family-wise error
• Different ways of being surprised
 • Voxel-wise inference (Maximum z)
 • Cluster-wise inference (Maximum size)
• Parametric vs non-parametric tests
• Enhanced clusters
• FDR - False Discovery Rate
Maximum z

- When we want to control “family-wise error”, what do we in practice want?
 - If the null-hypothesis is true (no activation) we want to reject it no more than 5% of the time.
 - And if we reject anything, we will definitely reject the most “extreme” value ($\text{max}(z)$) in the brain.

$max(z) = 5.16$
When we want to control “family-wise error”, what do we in practice want?

If the null-hypothesis is true (no activation) we want to reject it no more than 5% of the time.

And if we reject anything, we will definitely reject the most “extreme” value in the brain.

\[\max(z) = 6.84 \]
Maximum z

- When we want to control “family-wise error”, what do we in practice want?
- If the null-hypothesis is true (no activation) we want to reject it no more than 5% of the time.
- And if we reject anything, we will definitely reject the most “extreme” value in the brain.

$\max(z) = 5.93$
Maximum z

- When we want to control “family-wise error”, what do we in practice want?
- If the null-hypothesis is true (no activation) we want to reject it no more than 5% of the time.
- And if we reject anything, we will definitely reject the most “extreme” value in the brain.

$max(z) = 4.62$
Maximum z

- When we want to control “family-wise error”, what do we in practice want?

- If the null-hypothesis is true (no activation) we want to reject it no more than 5% of the time.

- And if we reject anything, we will definitely reject the most “extreme” value in the brain.

$\max(z) = 7.36$
Maximum z

• When we want to control “family-wise error”, what do we in practice want?

• If the null-hypothesis is true (no activation) we want to reject it no more than 5% of the time.

• And if we reject anything, we will definitely reject the most “extreme” value in the brain.

Etc…
Maximum z

- When we want to control “family-wise error”, what do we in practice want?

- If the null-hypothesis is true (no activation) we want to reject it no more than 5% of the time.

- And if we reject anything, we will definitely reject the most “extreme” value in the brain.

This is the distribution we want to use for our FWE control.
Maximum z

- When we want to control “family-wise error”, what do we in practice want?
- If the null-hypothesis is true (no activation) we want to reject it no more than 5% of the time.
- And if we reject anything, we will definitely reject the most “extreme” value in the brain.

This is the distribution we want to use for our FWE control.
But there is no known expression for it! 😞
Outline

• Null-hypothesis and Null-distribution
• Multiple comparisons and Family-wise error
• Different ways of being surprised
 • Voxel-wise inference (Maximum z)
 • Cluster-wise inference (Maximum size)
• Parametric vs non-parametric tests
• Enhanced clusters
• FDR - False Discovery Rate
Spatial extent: another way to be surprised

This far we have talked about voxel-based tests

We say: Look! A z-value of 7. That is so surprising (under the null-hypothesis) that I will have to reject it. (Though we are of course secretly delighted to do so)
Spatial extent: another way to be surprised

But sometimes our data just aren’t that surprising.

Nothing surprising here! The largest z-value is ~ 4. We cannot reject the null-hypothesis, and we are devastated.
Spatial extent: another way to be surprised

So we threshold the z-map at 2.3 (arbitrary threshold) and look at the spatial extent of clusters.

We say: Look at that **whopper!** 301 connected voxels all with z-values > 2.3. That is really surprising (under the null-hypothesis). I will have to reject it.
As with the z-values we need a “null-distribution”. What would that look like in this case? Let’s say we have acquired some data.
Threshold the z-map at 2.3 (arbitrary)

Distribution of Max Cluster Size

If we reject any cluster we will reject the largest. So what we want is the distribution of the largest cluster, under the null-hypothesis.
Distribution of Max Cluster Size

If we reject any cluster we will reject the largest. So what we want is the distribution of the largest cluster, under the null-hypothesis.

Locate the largest cluster anywhere in the brain.
Distribution of Max Cluster Size

If we reject any cluster we will reject the largest. So what we want is the distribution of the largest cluster, under the null-hypothesis.

And record how large it is.
If we reject any cluster we will reject the largest. So what we want is the distribution of the largest cluster, under the null-hypothesis.

And do the same for another experiment...
If we reject any cluster we will reject the largest. So what we want is the distribution of the largest cluster, under the null-hypothesis.
If we reject any cluster we will reject the largest. So what we want is the distribution of the largest cluster, under the null-hypothesis.

Until we have ...
Distribution of Max Cluster Size

If we reject any cluster we will reject the largest. So what we want is the distribution of the largest cluster, under the null-hypothesis. If we find a cluster larger than 76 voxels we reject the null-hypothesis.

And this (76) is the level we want to threshold at.
Distribution of Max Cluster Size

So, just as was the case for the t-values, we now have a distribution f that allows us to calculate a Family Wise threshold u pertaining to cluster size.

But what does f and u crucially depend on?
Distribution of Max Cluster Size

So, just as was the case for the z-values, we now have a distribution f that allows us to calculate a Family Wise threshold u pertaining to cluster size.

f depends crucially on the initial “cluster-forming” threshold?

$z = 2.3$
Distribution of Max Cluster Size

So, just as was the case for the z-values, we now have a distribution \(f \) that allows us to calculate a Family Wise threshold \(u \) pertaining to cluster size.

\[f \text{ depends crucially on the initial “cluster-forming” threshold?} \]

\[u = 76 \]

\[z = 2.3 \]
Distribution of Max Cluster Size

So, just as was the case for the z-values, we now have a distribution f that allows us to calculate a Family Wise threshold u pertaining to cluster size.

f depends crucially on the initial “cluster-forming” threshold?

$u = 49$

$z = 2.7$
Distribution of Max Cluster Size

So, just as was the case for the z-values, we now have a distribution f that allows us to calculate a Family Wise threshold u pertaining to cluster size.

f depends crucially on the initial “cluster-forming” threshold?

$u = 25$

$z = 3.1$
Distribution of Max Cluster Size

Hence the distribution for the cluster size should really be written $f(z)$ and the same for $u(z)$

But as before we don’t have an expression for these distributions.
Outline

- Null-hypothesis and Null-distribution
- Multiple comparisons and Family-wise error
- Different ways of being surprised
 - Voxel-wise inference (Maximum z)
 - Cluster-wise inference (Maximum size)
- Parametric vs non-parametric tests
- Enhanced clusters
- FDR - False Discovery Rate
Parametric vs non-parametric

- As we described earlier, one of the great things about for example the t-test is that we know the null-distribution.

- But most distributions are not that simple.

- And errors are not always normally distributed.
Example: VBM-style analysis

- Our data is segmented grey matter maps
- A voxel is either grey matter, or not.

\[
\begin{bmatrix}
\beta_1 \\
\beta_2
\end{bmatrix} = \begin{bmatrix} 0.4 \\ 0.6 \end{bmatrix}
\]

\[
\text{hist}(e) \sim N(?)
\]
Parametric vs non-parametric

- There are approximations to the Max-z and Max-size statistics
- These are valid under certain sets of assumptions
- But can be a problem when applied outside of that set of assumptions
- Search area “large relative to boundary”
- “High enough” cluster forming threshold
- Normal distributed errors
Parametric vs non-parametric

- Those approximations were based on Gaussian Random Field Theory, and was an impressive body of work

- They served us fantastically well at a time when we had little choice

- But the future is non-parametric
Parametric vs non-parametric

The Red Baron

FLAME going down in flames
A simple permutation test

- We can permute the data itself to create a distribution that we can use to test our statistic.
 + Makes very few assumptions about the data
 + Works for any test statistic

We have performed an experiment

And calculated a statistic, e.g. a t-value

$$t = 2.27$$

If the null-hypothesis is true, there is no difference between the groups. That means we should be able to “re-label” the individual points without changing anything.
A simple permutation test

- We can permute the data itself to create a distribution that we can use to test our statistic.
 + Makes very few assumptions about the data
 + Works for any test statistic

One re-labelling

t-value after re-labelling

$t = 0.67$

Let’s start collecting them

Original labelling

Group #
A simple permutation test

- We can permute the data itself to create a distribution that we can use to test our statistic.

 + Makes very few assumptions about the data
 + Works for any test statistic

Second re-labelling

\[t = 1.97 \]

And another one
A simple permutation test

- We can permute the data itself to create a distribution that we can use to test our statistic.
 - Makes very few assumptions about the data
 - Works for any test statistic

Of the 5000 re-labellings, only 90 had a t-value > 2.27 (the original labelling).

I.e. there is only a \(~1.8\%\) (90/5000) chance of obtaining a value > 2.27 if there is no difference between the groups

\[C.f. \ p(x \geq 2.27) = 1.79\% \ for \ t_{18} \]
And we can use this for any statistic

We compared activation by painful stimuli in two groups of 5 subjects each.

This is what we got

Very intriguing activation. $t_8 = 4.65$

Prof. ran to write to Science. But, did she jump the gun?
We compared activation by painful stimuli in two groups of 5 subjects each.

This is what we got

Very intriguing activation. $t_8 = 4.65$

Prof. ran to write to Science. But, did she jump the gun?

max(t) = 4.65

And we can use this for any statistic
And we can use this for any statistic

We compared activation by painful stimuli in two groups of 5 subjects each.

This is what we got

Very intriguing activation. $t_8 = 4.65$

Prof. ran to write to Science. But, did she jump the gun?

Group 1

Group 2

Permuted model

Permuted group difference map

$max(t) = 8.23$
We compared activation by painful stimuli in two groups of 5 subjects each.

This is what we got:

Very intriguing activation. $t_8 = 4.65$

Prof. ran to write to Science. But, did she jump the gun?

max(t) = 5.43

And we can use this for any statistic.
We compared activation by painful stimuli in two groups of 5 subjects each.

Very intriguing activation. $t_8 = 4.65$

Prof. ran to write to Science. But, did she jump the gun?

And we can use this for any statistic

$\max(t) = 5.84$
And we can use this for any statistic

We compared activation by painful stimuli in two groups of 5 subjects each.

This is what we got

Very intriguing activation. $t_8 = 4.65$

Prof. ran to write to Science. **But**, did she jump the gun?

3925 permutations yielded higher max(t)-value than original labelling. We **cannot** reject the null-hypothesis.

5000 permutations
But beware the “exchangeability”

- When we swap the labels of two data-points we need to make sure that they are “exchangeable”

- I will start to explain “exchangeability” through a case that is not

- But first we need to learn about covariance matrices

Height and weight of a random sample of Swedish men
Covariance matrices

• When we swap the labels of two data-points we need to make sure that they are “exchangeable”

• I will start to explain “exchangeability” through a case that is not

• But first we need to learn about covariance matrices

Mean height ≈ 181 cm

Mean weight ≈ 79.4 kg

Characterised by two means
Covariance matrices

- When we swap the labels of two data-points we need to make sure that they are “exchangeable”
- I will start to explain “exchangeability” through a case that is not
- But first we need to learn about covariance matrices

\[
\Sigma = \begin{bmatrix}
130 & 52 \\
52 & 165
\end{bmatrix}
\]

And a covariance matrix
Covariance matrices

• When we swap the labels of two data-points we need to make sure that they are “exchangeable”

• I will start to explain “exchangeability” through a case that is not

• But first we need to learn about covariance matrices

\[
\Sigma = \begin{bmatrix}
130 & 52 & 4.8 \\
52 & 165 & 69 \\
4.8 & 69 & 156
\end{bmatrix}
\]
Covariance matrices

• When we swap the labels of two data-points we need to make sure that they are “exchangeable”

• I will start to explain “exchangeability” through a case that is not

• But first we need to learn about covariance matrices
1st level fMRI data is not exchangeable

- You may, or may not, have seen this slide in the 1st level GLM talk.

\[y = \beta X + e \]

Design Matrix

Data from a voxel

Regressor, Explanatory Variable (EV)

Regression parameters, Effect sizes

\[e \sim N(0, \Sigma) \]

Gaussian noise (temporal autocorrelation)

Our old friend “the covariance matrix”
1st level fMRI data is not exchangeable

- One important component of noise in fMRI consists of physiological/neuronal events convolved by the HRF
I st level fMRI data is not exchangeable

- One important component of noise in fMRI consists of physiological/neuronal events convolved by the HRF

If we sample this every 20 seconds it no longer looks “smooth”
1st level fMRI data is not exchangeable

- One important component of noise in fMRI consists of physiological/neuronal events convolved by the HRF

\[e \sim N(0, \sigma^2 I) \]
1st level fMRI data is not exchangeable

- One important component of noise in fMRI consists of physiological/neuronal events convolved by the HRF

But that is not a realistic TR. What about every 3 seconds?
1st level fMRI data is not exchangeable

- One important component of noise in fMRI consists of physiological/neuronal events convolved by the HRF
1st level fMRI data is not exchangeable

• Let us now return to our model again

\[
\begin{align*}
\mathbf{y} &= \mathbf{X} \mathbf{\beta} + \mathbf{e} \\
\mathbf{y} &= \begin{bmatrix} X_1 & X_2 \end{bmatrix} \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + e
\end{align*}
\]

Regressor, Explanatory Variable (EV)
Regression parameters, Effect sizes

• The model consists of our regressors \(\mathbf{X} \) and the noise model

• All permutations must result in “equivalent models”

• Let us now see what happens if we swap two data-points (points 5 and 10)
First level fMRI data is not exchangeable

- One important component of noise in fMRI consists of physiological/neuronal events convolved by the HRF.
1st level fMRI data is not exchangeable

- One important component of noise in fMRI consists of physiological/neuronal events convolved by the HRF

And for a random permutation …

And the models are no longer equivalent
Back to exchangeability

• Data-points are not “exchangeable” if swapping them means that the noise covariance-matrix ends up looking different.

• Formally “The joint distribution of the data must be unchanged by the permutations under the null-hypothesis”.

• If the noise covariance-matrix has non-zero off-diagonal elements (covariances) you need to beware.

• You typically never estimate or see the covariance-matrix. You need to “imagine it” and determine from that if there is a problem.
Examples of exchangeability:
Two groups unpaired

This is the “exchangeability group”. Here all scans are in the same group, which means any scan can be exchanged for any other.

N.B. The “group” labelling is used for completely different purposes when using FLAME/GRFT
The implicit assumption here is that data from all subjects have the same uncertainty and are all independent.

Examples of exchangeability:

Two groups unpaired

Assumed covariance matrix
Examples of exchangeability:
Two groups unpaired

Original Perm 1 Perm 2 ...

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Examples of exchangeability: Single group average

Here we model a single mean and want to know if that is different from zero.

But there isn’t really anything to permute, or is there?
Examples of exchangeability:
Single group average

Original

\[t = -0.17 \]
Examples of exchangeability:
Single group average

First flip

$t = -0.09$
Examples of exchangeability: Single group average

$\t = 1.54$
Examples of exchangeability:

Single group average
Examples of exchangeability:
Single group average

And the assumptions are:
• Symmetric errors
• Errors independent
• Subjects drawn from a single population
Examples of exchangeability: Two groups paired

Here we can only exchange scans within each subject. I.e. Input 1 for Input 2, Input 3 for Input 4 etc
Assumed covariance matrix

Examples of exchangeability: Two groups paired

The implicit assumption here is that data from all subjects have the same uncertainty and that there is no dependence between subjects.
Examples of exchangeability: Two groups paired

Assumed covariance matrix

The implicit assumption here is that data from all subjects have the same uncertainty and that there is no dependence between subjects.
Examples of exchangeability: Two groups paired

Original Perm 1 Perm 2 ...

1 2 1 2
2 1 2 3
3 3 3 3
4 4 4 4
5 5 5 6
6 6 6 5
7 8 7 8
8 7 8 7
9 9 9 9
10 10 10 10
Examples of exchangeability: blocked ANOVA

Same as previous: We can only swap labels within each subject.
Examples of exchangeability: blocked ANOVA

Assumed covariance matrix

Assumptions: All subjects from the same "population", no dependence between subjects and "compound symmetry" within subjects
Examples of exchangeability: blocked ANOVA

Assumed covariance matrix

Assumptions: All subjects from the same “population”, no dependence between subjects and “compound symmetry” within subjects
Examples of exchangeability: blocked ANOVA

Assumed covariance matrix

Assumptions: All subjects from the same “population”, no dependence between subjects and “compound symmetry” within subjects
My advice: Keep it simple!

Each subject scanned like this

We want to find areas that respond “linearly” to pain.

Taking 4 contrasts to 2nd level
My advice: Keep it simple!

Each subject scanned like this

Taking 4 contrasts to 2nd level

Repeating this for four subjects
My advice: Keep it simple!

You have to assume this covariance matrix.

And figure out this contrast.

Why put yourself through all that pain?
My advice: Keep it simple!

And get this at the second level

Assuming only symmetric errors

Much nicer, no?

When you can take a single contrast from the first level
Warning pertaining to FSL 6.0.1

Do not use the Model setup wizard together with Randomise in FSL 6.0.1
Outline

• Null-hypothesis and Null-distribution
• Multiple comparisons and Family-wise error
• Different ways of being surprised
 • Voxel-wise inference (Maximum z)
 • Cluster-wise inference (Maximum size)
• Parametric vs non-parametric tests
• Enhanced clusters
• FDR - False Discovery Rate
Clustering cookbook

Instead of resel-based correction, we can do clustering:

Threshold at (arbitrary!) \(z\) level
Clustering cookbook

Instead of resel-based correction, we can do clustering:

Threshold at (arbitrary!) z level

Form clusters from surviving voxels. Calculate the size threshold $u(R, z)$. Any cluster larger than u “survives” and we reject the null-hypothesis for that.
How do we choose the (arbitrary!) z-threshold?

This is arbitrary and a trade-off
How do we choose the (arbitrary!) z-threshold?

This is arbitrary and a trade-off

1. **Low threshold** - can violate RFT assumptions, but can detect clusters with large spatial extent and low z
How do we choose the (arbitrary!) z-threshold?

This is arbitrary and a trade-off

1. **Low threshold** - can violate RFT assumptions, but can detect clusters with large spatial extent and low z

2. **High threshold** - gives more power to clusters with small spatial extent and high z
How do we choose the (arbitrary!) z-threshold?

This is arbitrary and a trade-off

1. **Low threshold** - can violate RFT assumptions, but can detect clusters with large spatial extent and low z

2. **High threshold** - gives more power to clusters with small spatial extent and high z

Tends to be more sensitive than voxel-wise corrected testing

Results depend on extent of spatial smoothing in pre-processing
TFCE
Threshold-Free Cluster Enhancement
[Smith & Nichols, NeuroImage 2009]

• Cluster thresholding:
 • popular because it’s sensitive, due to its use of spatial extent
 • but the pre-smoothing extent is arbitrary
 • and so is the cluster-forming threshold
 ➡ unstable and arbitrary

• TFCE
 • integrates cluster “scores” over all possible thresholds
 • output at each voxel is measure of local cluster-like support
 • similar sensitivity to optimal cluster-thresholding, but stable and non-arbitrary

The TFCE value at point p is given by the sum, over the shaded area, of the score from each contributing incremental section:

$$\text{TFCE}(p) = \sum_h e(h)^e \cdot h^H$$
Qualitative example

- Original
- Signal
- TFCE
- Enhancement
TFCE for FSL-VBM

Z=22
Z=48
Y=-16
TFCE for TBSS

controls > schizophrenics

$p<0.05$ corrected for multiple comparisons across space, using randomise

cluster-based:
cluster-forming threshold = 2 or 3

TFCE
Outline

• Null-hypothesis and Null-distribution
• Multiple comparisons and Family-wise error
• Different ways of being surprised
 • Voxel-wise inference (Maximum z)
 • Cluster-wise inference (Maximum size)
• Parametric vs non-parametric tests
• Enhanced clusters
• FDR - False Discovery Rate
False Discovery Rate

• FDR: False Discovery Rate
 A “new” way to look at inference.
• Uncorrected (for multiple-comparisons):
 • Is equivalent to saying: “I am happy to nearly always say something silly about my experiments”.
 • On average, 5% of all voxels are false positives
• Family-Wise Error (FWE):
 • Is equivalent to saying: “I am happy to say something silly about 5% of my experiments”.
 • On average, 5% of all experiments have one or more false positive voxels
• False Discovery Rate
 • Is equivalent to saying: “I am happy if 5% of what I say about each experiment is silly”.
 • On average, 5% of significant voxels are false positives
Little imaging demonstration.
uncorrected voxelwise control of FP rate at 10%

percentage of all null pixels that are False Positives

control of FamilyWise Error rate at 10%

occurrence of FamilyWise Error

control of False Discovery Rate at 10%

percentage of activated (reported) pixels that are False Positives
FDR for dummies

- Makes assumptions about how errors are distributed (like GRT).
- Used to calculate a threshold.
- Threshold such that X% of super-threshold (reported) voxels are false positives.
- Threshold depends on the data. May for example be very different for [1 0] and [0 1] in the same study.