Inference

how surprising is your statistic! (thresholding)
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The task of classical
inference

® Given some data we want to know if (e.g.) a mean is
different from zero or if two means are different
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Tools of classical

inference
|. A null-hypothesis

Typically the opposite of what we actually “hope”, e.g.

There is no effect of There is no difference
treatment: I = 0 between groups: Ui = L2
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Tools of classical

inference

|. A null-hypothesis
2. A test-statistic

Assesses ‘“‘trustworthiness”

Trustworthy
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Tools of classical

inference

|. A null-hypothesis
2. A test-statistic

Assesses ‘“‘trustworthiness”

A [-statistic reflects precisely this

Large difference:
Trustworthy

a:— To
Many measurements:
Trustworthy

\ Small variability:

Trustworthy
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Tools of classical

inference

|. A null-hypothesis
2. A test-statistic

Or expressed in GLM lingo
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Small variability:
Trustworthy
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Many measurements: Trustworthy



Tools of classical

inference

|. A null-hypothesis
2. A test-statistic

L . We might then get these data
3. A null-distribution
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Let us assume there is no
difference, i.e. the CTB 117
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Tools of classical

inference

|. A null-hypothesis
2. A test-statistic

L . We might then get these data
3. A null-distribution
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Tools of classical

inference

|. A null-hypothesis
2. A test-statistic
3. A null-distribution

or we could have gotten these

8,

B, |T e

t = —0.01
el
/ \ ~

/ L= CTﬁ
e = Vo2, /eT(XTX)1c
/

™~

o =1.28 Constant

O



Tools of classical

inference

|. A null-hypothesis
2. A test-statistic
3. A null-distribution

maybe these
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Tools of classical

inference

|. A null-hypothesis
2. A test-statistic
3. A null-distribution

or perhaps these

_51_4_
B |T €
'3 =1.22

t =219
-~
— - / c f

- mnum B . - VoZy/eT(XTX)1c
5 0 5 ; /
t 0 = 0.78 Constant



Tools of classical

inference

|. A null-hypothesis
2. A test-statistic
3. A null-distribution

etc
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Tools of classical

inference

|. A null-hypothesis
2. A test-statistic
3. A null-distribution

g
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And if we do this til
the cows come

home




Tools of classical

inference

|. A null-hypothesis
2. A test-statistic
3. A null-distribution

S0, why is this
helpful?




Tools of classical
inference

|. A null-hypothesis
2. A test-statistic
3. A null-distribution

Well, it for example tells
us that in ~1% of the
cases t > 3.00, even
when the null-hypothesis
IS true.



Tools of classical

inference

|. A null-hypothesis
2. A test-statistic
3. A null-distribution

Or that in ~5% of the
casest > |.99.

VWhen the null-
hypothesis is true.




Tools of classical

inference
|. A null-hypothesis

2. A test-statistic And best of all: This
3. A null-distribution distribution is

known i.e. one can
calculate it.
Much as one can
calculate sine or
cosine

S




Tools of classical
inference

|. A null-hypothesis
2. A test-statistic
3. A null-distribution

S

And best of all: This
distribution is
known i.e. one can
calculate it.
Much as one can
calculate sine or
cosine

Provided that e ~ N(0,0%)



An example experiment

|. A null-hypothesis Hy: T1=72 , H:T1>7
2. A test-statistic
3. A null-distribution

So, with these tools let us do an experiment



An example experiment

|. A null-hypothesis Hy: T1=72 , H:T1>7
2. A test-statistic lg= 2.64
3. A null-distribution

So, with these tools let us do an experiment
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An example experiment

|. A null-hypothesis Hy: T1=72 , H:T1>7
2. A test-statistic lg= 2.64
3. A null-distribution

So, with these tools let us do an experiment

If the null-hypothesis is
true, we would expect to
have a ~1.46% chance of
finding a t-value this large
or larger




An example experiment

|. A null-hypothesis Hy 71=75 , H:7T1>75
2. A test-statistic lg= 2.64
3. A null-distribution fy = 2.64*

So, with these tools let us do an experiment

There is ~1.46% risk that

we reject the null-
hypothesis (i.e. claim we
found something) when
the null is actually true.
We can live with that
(well, | can).




False positives/negatives

* | am sure you have all heard about “false positives”
and “false negatives”.
* But what does that actually mean?



False positives/negatives

* | am sure you have all heard about “false positives”
and “false negatives”.
* But what does that actually mean?

* We want to perform an experiment and as part of
that we define a null-hypothesis,e.g. Hy: p =0
* Now what can happen?



False positives/negatives

* | am sure you have all heard about “false positives”
and “false negatives”.
* But what does that actually mean?

* We want to perform an experiment and as part of
that we define a null-hypothesis,e.g. Hy: p =0
* Now what can happen?

Ho is true

Ho is false } True state of affairs



False positives/negatives

* | am sure you have all heard about “false positives”
and “false negatives”.
* But what does that actually mean?

* We want to perform an experiment and as part of
that we define a null-hypothesis,e.g. Hy: p =0
* Now what can happen?

Ho is true

Ho is false } True state of affairs

We don'’t reject Ho

We reject Ho } Our decision



False positives/negatives

Ho is true

Ho is false } True state of affairs

We don’t reject Ho

We reject Ho } Our decision

We don’t reject Ho  We reject Ho

Ho is true

Ho is false



False positives/negatives

Ho is true

Ho is false } True state of affairs

We don’t reject Ho

We reject Ho } Our decision

We don’t reject Ho  We reject Ho

Ho is true

Ho is false




False positives/negatives

Ho is true

Ho is false } True state of affairs

We don’t reject Ho

We reject Ho } Our decision

We don’t reject Ho  We reject Ho

Ho is true False positive
Ho is false False negative &~/




False positives/negatives

Ho is true

Ho is false } True state of affairs

We don’t reject Ho

We reject Ho } Our decision

We don’t reject Ho  We reject Ho
Ho is true False positive
Type | error

False negative e

Ho is false Type Il error <
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Multiple Comparisons

® |n neuroimaging we typically perform many tests as

part of a study
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Different here?
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VWhat happens when we apply this to
imaging data!’

z-map where each voxel ~N. "

<t Null-hypothesis true everywhere, i.e.
‘ NO ACTIVATIONS

0.15}

Z-map |6 clusters
thresholded at 288 voxels
| .64 ~5.5% of the voxels

That’s a LOT of false positives



Italians doing maths:
The Bonferroni correction

Bonferroni says threshold at & divided by # of tests

5255 voxels
0.05/5255=[0->

5.65
Z-map
thresholded at

5.65

No false positives.
Hurrah for ltaly!




But ... doesn’t 5.65 sound very high?

Largest
observed value Too lenient Too harsh

0.9{

0.6

0.3

Bonferroni
threshold

| /

-6 -3 0 3 6

100+

Observed values
in the z-map

So what do we want then?




Family-wise error

Let’s say we perform a series of identical studies

* Each z-Ir:a? is tthed end
& (¢ X \”" . '~}i~ 888 result of a study

Let us further say that the null-hypothesis is true

We want to threshold the data so that only once in 20
studies do we find a voxel above this threshold

BHEEEEEEREEN ;. o v
.......... such a threshold?
I
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Maximum z

When we want to control “family-wise error”, what do we
in practice want!

If the null-hypothesis is true (no activation) we want to
reject it no more than 5% of the time.

And if we reject anything, we will definitely reject the most
“extreme” value (max(z)) in the brain.




Maximum z

When we want to control “family-wise error”, what do we
in practice want!

If the null-hypothesis is true (no activation) we want to
reject it no more than 5% of the time.

And if we reject anything, we will definitely reject the most
“extreme’”’ value in the brain.




Maximum z

When we want to control “family-wise error”, what do we
in practice want!

If the null-hypothesis is true (no activation) we want to
reject it no more than 5% of the time.

And if we reject anything, we will definitely reject the most
“extreme’”’ value in the brain.

max(z)=5.93



Maximum z

When we want to control “family-wise error”, what do we
in practice want!

If the null-hypothesis is true (no activation) we want to
reject it no more than 5% of the time.

And if we reject anything, we will definitely reject the most
“extreme’”’ value in the brain.

max(z)=4.62



Maximum z

When we want to control “family-wise error”, what do we
in practice want!

If the null-hypothesis is true (no activation) we want to
reject it no more than 5% of the time.

And if we reject anything, we will definitely reject the most
“extreme’”’ value in the brain.




Maximum Z

When we want to control “family-wise error”, what do we
in practice want!

If the null-hypothesis is true (no activation) we want to
reject it no more than 5% of the time.

And if we reject anything, we will definitely reject the most
“extreme” value in the brain.

Etc...

0 5 10 15 20



Maximum Z

When we want to control “family-wise error”, what do we
in practice want!

If the null-hypothesis is true (no activation) we want to
reject it no more than 5% of the time.

And if we reject anything, we will definitely reject the most
“extreme” value in the brain.

This is the distribution we

want to use for our FWE
control.

5 10 15 20



Maximum Z

When we want to control “family-wise error”, what do we
in practice want!

If the null-hypothesis is true (no activation) we want to
reject it no more than 5% of the time.

And if we reject anything, we will definitely reject the most
“extreme” value in the brain.

This is the distribution we

want to use for our FWE
control.
But there is no known
expression for it! ®

5 10 15 20
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Spatial extent: another way to be
surprised

This far we have talked about voxel-based tests

We say: Look! A z-value of 7. That is
so surprising (under the null-
hypothesis) that | will have to reject it.

(Though we are of course secretly
delighted to do so)




Spatial extent: another way to be
surprised

But sometimes our data just aren’t that surprising.

Nothing surprising here! The largest
z-value is ~4.We cannot reject the
null-hypothesis, and we are
devastated.




Spatial extent: another way to be
surprised

So we threshold the z-map at 2.3 (arbitrary threshold) and
look at the spatial extent of clusters

We say: Look at that whopper! 301
connected voxels all with z-values >
2.3. That is really surprising (under the
null-hypothesis). | will have to reject it.




Distribution of Max Cluster Size

As with the z-values we need a
“null-distribution”. What would that
look like in this case?

Let's say we
have acquired
some data



Distribution of Max Cluster Size

If we reject any cluster we will
reject the largest. So what we want
is the distribution of the largest
cluster, under the
null-hypothesis.

Threshold the
Z-map at 2.3
(arbitrary)



Distribution of Max Cluster Size

If we reject any cluster we will
reject the largest. So what we want
is the distribution of the largest
cluster, under the
null-hypothesis.

g /8

Locate the
largest cluster
anywhere in the
brain.



Distribution of Max Cluster Size

If we reject any cluster we will
reject the largest. So what we want
Is the distribution of the largest
cluster, under the
null-hypothesis.

And record how
large it is.




Distribution of Max Cluster Size

If we reject any cluster we will
reject the largest. So what we want
Is the distribution of the largest
cluster, under the
null-hypothesis.

And do the same

for another
experiment...




Distribution of Max Cluster Size

If we reject any cluster we will
reject the largest. So what we want
Is the distribution of the largest
cluster, under the
null-hypothesis.

Etc ...




Distribution of Max Cluster Size

If we reject any cluster we will
reject the largest. So what we want
Is the distribution of the largest
cluster, under the
null-hypothesis.

0.06

0.04

Until we have ...

0.02+

0 20 40 60 30 100



Distribution of Max Cluster Size

If we reject any cluster we will
reject the largest. So what we want

IS the distribution of the largest |
cluster, under the If we find a cluster larger

null-hypothesis. than 76 voxels we reject
the null-hypothesis.

0.06

0.04

_ And this (76) is the level
—we want to threshold at

0.02+

0 20 40 60 80 100



Distribution of Max Cluster Size

S0, just as was the case for the t-
values, we now have a distribution
fthat allows us to calculate a

Family Wise threshold « pertaining
to cluster size. But what does

fand u
| crucially
f=u depend on?

0.06

0.04

0.02+

100




Distribution of Max Cluster Size

So, just as was the case for the z-
values, we now have a distribution f depends crucially on
fthat allows us to calculate a the initial “cluster-
Family Wise threshold « pertaining forming” threshold?

to cluster size.




Distribution of Max Cluster Size

S0, just as was the case for the z-
values, we now have a distribution fdepends crucially on
fthat allows us to calculate a the initial “cluster-
Family Wise threshold  pertaining forming” threshold?

to cluster size.

0.1
0.08+
0.06
0.04+

0.02+

0 20 40 60 30 100 z=273



Distribution of Max Cluster Size

S0, just as was the case for the z-
values, we now have a distribution fdepends crucially on
fthat allows us to calculate a the initial “cluster-
Family Wise threshold  pertaining forming” threshold?

to cluster size.

0.1
0.08+
0.06
0.04+

0.02+

% 20 40 50 30 100 z=2.7



Distribution of Max Cluster Size

S0, just as was the case for the z-
values, we now have a distribution fdepends crucially on
fthat allows us to calculate a the initial “cluster-
Family Wise threshold  pertaining forming” threshold?

to cluster size.

0.1
0.08+
0.06
0.04+

u=25

0.02+

% 20 40 50 30 100 z=23.1



Distribution of Max Cluster Size

Hence the distribution for the cluster size should
really be written f(z) and the same for u(z)

z=3.1
0.1 , 1
2=2.7
0.06 il | |
0 0al 0.08/ -
1 = 25 - Z — 23
0.02 ' 0.1 x x ,
0.04] V
% 20 40 60 1Y = 490'08
0.02| 506
% 20 40 60 0.04
But as before we don’'t have an 002!
expression for these :

0 20 40 60

distributions.
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Parametric vs non-parametric

® As we described earlier, one of the
great things about for example the
t-test is that we know the null-
distribution

-5 0 5
Provided that e ~ N(0,02)

® But most distributions are not that
simple

® And errors are not always normal-
distributed

-0.5 0 0.5



Example:VBM-style analysis

Our data is segmented grey matter maps

A voxel is either grey matter, or not.

Group #l| Group #2
(Oxford students) (Train spotters)

0.4 ]
0.6

Ok!

~ N?



Parametric vs non-parametric

® There are approximations to the
Max-z and Max-size statistics

® [hese are valid under certain sets
of assumptions

® But can be a problem when applied
outside of that set of assumptions

0.06

0.04

0.02+

40 60 80 100

® Search area “large relative to

boundary”

® “High enough” cluster forming

threshold

® NlAarmal Aictrihiitad arrare
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Cluster failure: Why fMRI inferences for spatial extent

have inflated false-positive

rates
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The most widely used task functional magnetic resonance imaging
(fMRI) I use p. i isti is that depend on a
variety of assumptions. In this work, we use real resting-state data
and a total of 3 million random task group analyses to compute
empirical familywise error rates for the fMRI software packages SPM,

(FWE), the chance of one or more false positives, and empirically
measure the FWE as the proportion of analyses that give rise to
any significant results. Here, we consider both two-sample and
one-sample designs. Because two groups of subjects are randomly
drawn from a large group of healthy controls, the null hypothesis



Parametric vs non-parametric

® Those approximations were based
on Gaussian Random Field Theory,
and was an impressive body of work

® They served us fantastically well at a
time when we had little choice

® But the future is non-parametric
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TESTING FOR SIGNALS WITH UNKNOWN
LOCATION AND SCALE IN A x2 RANDOM
FIELD, WITH AN APPLICATION TO fMRI

ESTIMATING THE NUMBER OF PEAKS IN A RANDOM
FIELD USING THE HADWIGER CHARACTERISTIC OF

EXCURSION SETS, WITH APPLICATIONS TO

MEDICAL IMAGES'

BY K. J. WORSLEY
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KEITH J. WORSLEY,* McGill University

Abstract

The Geometry of Random Images

Keith J.

The geometry in the title is not the geometry of lines
and angles but the modern geometry of topology and
shape. What has this to do with statistics? Some re-
cent work has found some fascinating applications of a
mixture of geometry, topology, ility, and statis-

‘Worsley

it, like a doughnut (see Fig. 1c), then the result no
longer holds. In fact, the result is V — E+ F — P =0
for any solid with just one hole.

But this does not deter a good
far from it—it opens up vast new pos-

Too bad!

tics to some very pressing problems in newly emerging
areas of medical imaging and astrophysics.

‘Where is the link? Let us begin with a quick intro-
duction to one of the fundamental tools of topology,
the Euler charactes

pology: The Euler C

Named after Leonhard Euler (1707-1783), the most
prolific mathematician of the 18th century, the E
ler characteristic itself began with Euler’s observation
about polyhedra.

Recall that a polyhedron is a solid object bounded
by plane faces, such as a cube. Euler realized that, if
you count the faces (F), edges (E), and vertices (V)
of a polyhedron, then V — E + F = 2 no matter how
the polyhedron is constructed.

A cube, for example, has F = 6 faces, E = 12 edges
and V = 8 vertices (see Fig. 1a) so that 8—12+6 = 2.
For a solid that consists of P polyhedra, stuck together
on at least one common face, the slightly more general
formula becomes V — E+ F — P=1.

A little experimentation will convince you that this
new formula works for all solids (see Fig. 1b)—well
almost all. If the solid has a hole going right through

&

sibilities! What happens if there are two holes, like
1d]

Then it turns out that

a figure 8 (sce F

V —E+F—P = -1, and 50 on; each hole reduces
V-E+F-Pbyl

So now suddenly we have a fascinating new tool.
We can count the number of holes in a solid using the

P

into polyhedra, the value of V — E+ F — P is invariant.

‘Thus is born the field of topology: We define the Euler

characteristic (EC) of a solid as simply
EC=V-E+F-P

for any subdivision of the solid into polyhedra.

Thus the EC of a pretzel-shaped solid (Fig. 1e) is
—2: +1 for the solid part (the part you eat), and —3
for each of the three holes, giving —2 overall. Have
we covered all possibilities? Not quite—if the solid is
hollow, like a tennis ball, then surprisingly enough the
EC s 2 (sce Fig. 1f).

Think you've got it now? How about a solid shaped
like a bicycle inner tube? Answer: The EC is 0, and if
it has a puncture, then the EC is —1.

One more slight generalization, which will prove to
be extremely useful for practical applications: Suppose

27

nals with unknown
st statistic was the
«e’, N dimensions
aceisidentical toa
ough the emphasis
lent. Two methods
= 3: one based on
 characteristic of
/ the latter method
result to x? fields.
case. In this paper
in images obtained

y; image analysis;

sion tomography (PET)
+ interested in detecting
the signal to noise ratio,
ttion with a filter f. The

[(8))

from the matched filter

which ctatac that cianal




Parametric vs
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A simple permutation test

We can permute the data itself to create a distribution
that we can use to test our statistic.

+ Makes very few assumptions about the data

+ Works for any test statistic

We have performed an And calculated a statistic,
experiment e.g.a f-value

3 t=2.727

If the null-hypothesis is true, there is no
difference between the groups. That
means we should be able to “re-label”
the individual points without changing

1 2 anything.
Group #

© OoOOe O
> B> bbb b




A simple permutation test

We can permute the data itself to create a distribution
that we can use to test our statistic.

+ Makes very few assumptions about the data

+ Works for any test statistic

One re-labelling t-value after re-labelling
3 t=0.67
ot 2 ; Original
§ .
| : p % labelling
o 2 N o o
Group #

Let’s start collecting them



A simple permutation test

We can permute the data itself to create a distribution

that we can use to test our statistic.

+ Makes very few assumptions about the data

+ Works for any test statistic

Second re-labelling t-value after re-labelling

3 t=1.97

> g ; Original
1 : P ~ labelling
O | . |

1 2 K 0
Group #

5

And another one



A simple permutation test

*  We can permute the data itself to create a distribution
that we can use to test our statistic.

+ Makes very few assumptions about the data

+ Works for any test statistic

Of the 5000 re-labellings, only 90 had a t-
value > 2.27 (the original labelling).

l.e. there is only a ~1.8% (90/5000) chance | o
of obtaining a value > 2.27 if there is no Original

difference between the groups ~ labelling
l /

Ch. p(x=>2.27) = 1.79% for tg 5 0 5
5000 re-labellings. Phew!




And we can use this for any statistic

This is what we got
We compared activation Very intriguing
by painful stimuli in two activation. lg = 4.65

groups of 5 subjects

Prof. ran to write to
each.

Science. But, did she jump
the gun?




And we can use this for any statistic

This is what we got
We compared activation
by painful stimuli in two

groups of 5 subjects
each.

Very intriguing
activation. Ig = 4.65

Prof. ran to write to

Science. But, did she jump
the gun?

max(f)=4.65

2nd level Our group
model difference map



And we can use this for any statistic

This is what we got
We compared activation
by painful stimuli in two

groups of 5 subjects
each.

Very intriguing
activation. Ig = 4.65

Prof. ran to write to

Science. But, did she jump
the gun?

max({)=8.23

Permuted Permuted group
model difference map



And we can use this for any statistic

This is what we got
We compared activation
by painful stimuli in two

groups of 5 subjects
each.

Very intriguing
activation. Ig = 4.65

Prof. ran to write to

Science. But, did she jump
the gun?

max(f)=5.43

2nd 2nd permuted
Permutation map



And we can use this for any statistic

This is what we got
We compared activation
by painful stimuli in two

groups of 5 subjects
each.

Very intriguing
activation. Ig = 4.65

Prof. ran to write to

Science. But, did she jump
the gun?

max({)=5.84

3rd 3rd permuted
Permutation map



And we can use this for any statistic

This is what we got
We compared activation
by painful stimuli in two

groups of 5 subjects
each.

Very intriguing
activation. Ig = 4.65

Prof. ran to write to
Science. But, did she jump

Original the gun!

labelling
/

3925 permutations
yielded higher
max(t)-value than
original labelling.
o We cannot reject
the null-hypothesis.

5000 permutations



But beware the “exchangeability”

® When we swap the labels of two data-points we need to
make sure that they are “exchangeable”

® | will start to explain “exchangeability” through a case
that is not

® But first we need to learn about covariance matrices

Height and weight
BRTACR I of a random
AR sample of Swedish
men

Weight (kg)

Height (cm)



Covariance matrices

® When we swap the labels of two data-points we need to
make sure that they are “exchangeable”

® | will start to explain “exchangeability” through a case
that is not

® But first we need to learn about covariance matrices

Mean height = 18] cm

N A Characterised
o | TEpltyd ' Mean weight =79.4 kg by two means

Weight (kg)

150 170 190 210



Covariance matrices

® When we swap the labels of two data-points we need to
make sure that they are “exchangeable”

® | will start to explain “exchangeability” through a case
that is not

® But first we need to learn about covariance matrices

Weight (kg)

150

210

130

D2

D2
165

And a
covariance -

matrix



Covariance matrices

® When we swap the labels of two data-points we need to
make sure that they are “exchangeable”

® | will start to explain “exchangeability” through a case
that is not

® But first we need to learn about covariance matrices

T 130 52 4.8
o w=| 52 165 69
I 48 69 156

SIO 76 9IO 1 lIO
Weight (kg)



Covariance matrices

® When we swap the labels of two data-points we need to
make sure that they are “exchangeable”

® | will start to explain “exchangeability” through a case
that is not

® But first we need to learn about covariance matrices

1101

DBP (mm Hg)
= S
° ®

W
o
®

50 70 %0 116
Weight (kg)



| st level fMRI data is not exchangeable

® You may, or may not, have seen this slide in the |st level
GLM talk.

Regressor, Regression parameters,
Explanatory Variable (EV) Effect sizes
X1 X2_

This time we will
look more closely

] ] at this part
— b1 | + /
P2 e ~ N(0,X)

;

_ _ Our old friend “the
Yy = X g + € covariance matrix”’

Data from . . Gaussian noise
Design Matrix :
a voxel (temporal autocorrelation)




| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

0.5

I [

[
OW\/W%W\/\/\/\W\/
|
250 30

-0.5 '

[ I

I I I
0 50 100 150 200
Time (sec)

0



| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

B

-0.5 | |
0] 50 100 150 250 300
Time (sec)
0.5 f | | | | | | |

/ —

-

) _IMWM/ 1
-0.5 I I I I I I I I |
0 5 10 15 20 25 30 35 40 45 50
Sample (#)

If we sample this every 20 seconds it no longer looks “smooth”



| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

05 [ [ [ | | | [ [ [

= W/\/\/\JW sl
l l l | | | l l l
5 10 15 20 25 30 35 40 45 5

-0.5

o) o)

. . Sample (#)
Variance Variance

at point |  at point 2 2

<

e ~ N(0,0°I)



| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

0.5

kR

-0'50 50 100 1 E|>0 200 2&0 300
Time (sec)
0.5 | | | | | | | |
¢W
O o

-0.5

I I I I I I I | |
0 5 10 15 20 25 30 35 40 45 50
Sample (#)

But that is not a realistic TR.What about every 3 seconds!?



| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

0.5 l 1 1 | | | 1 1 1
Ok \/\/AE\/\/\W |
| | | l

-0.5

1 1 1 1 1
0] 5 10 15 40 45 50

Variance Variance
at point |  at point 2

<



| st level fMRI data is not exchangeable

® | et us now return to our model again

R , R ' ters, :
Explanatory Variable (EV) O oot aivos ® The model consists
\ of our regressors X
X1 X9_ :
and the noise model
® All permutations
- 3 - must result in
— 1 6 . I d I 99
B, equivalent models
® | et us now see what
happens if we swap
- - two data-points
Yy = X 3 + e . P
Data from Gaussian noise (POlntS 5 and IO)

Design Matrix

a voxel (temporal autocorrelation)



| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

0.5

OWW

-0.5

I I | I I I I I |
0 5 10 15 20 25 30 35 40 45 50
Sample (#

“Point” 10 now

covaries with
And the models
are no longer
equivalent




| st level fMRI data is not exchangeable

® One important component of noise in fMRI consists of
physiological/neuronal events convolved by the HRF

05 [ [ [ I I I [ [ [

o) = \/\/ﬁ\MM \/f/\’_/\/ o
1 1 1 | | | 1 1 1
5 10 15 20 25 30 35 40 45 5

-0.5

o) o)

Sample (#)

And the models
are no longer
equivalent

And for a random
permutation ...




Back to exchangeability

Data-points are not “exchangeable” if swapping them
means that the noise covariance-matrix ends up looking
different.

Formally “The joint distribution of the data must be
unchanged by the permutations under the null-
hypothesis”.

If the noise covariance-matrix has non-zero off-diagonal
elements (covariances) you need to beware.

You typically never estimate or see the covariance-
matrix. You need to “imagine it” and determine from that
if there is a problem.



Examples of exchangeability:
Two groups unpaired

O O 'X| General Linear Model

EVs I Contrasts & F-testsl

Number of main EVs |2 -

MNumber of additional, voxel-dependent EVs |lJ —

Paste I Group EV1

EVZ

|group A |group B

Input 1 1

0

RILAIEI4IE 11
/

1
Input 2 1
1

Input 3

Input 4

Input 5

ololo

X

Input 6

LR UAIRIL RIS U AR IR TS
olololo = =] =

1
1
1
Input 7 1
1
1

RILARILAR USRI LRI RIS 4IRS

Input 8

Input 9

Input 10 1 0
Setup orthogdralisations I

RIARUARUAR AR TR (RURH SN AET 3

= = = = =

This is the “exchangeability
group’. Here all scans are
in the same group, which

means any scan can be
exchanged for any other.

View design | Efficiency | Done |

v

\ Model

T T e T T = T = S =S e

Cl group & > group B

C2 group B > group A -

up A group B
1 1
1 1

N.B.The “group” labelling
is used for completely

different purposes when
using FLAME/GRFT




Examples of exchangeability:
Two groups unpaired

@] @) %| General Linear Model
EVs l Contrasts & F-tests]

NumberofmainEVsm Assumed Covariance matrix

Number of additional, voxel-dependent EVs [0 3

Paste | Group EV1 Eve

[l
=
o
c
L=}
I=
7=
=
o
=}
o8]

o
C

Input 1 e e —
Input 2 1 g\ i 0 3
Input 3 e 1 S0 =
Input 4 = 1 SN0 =
Input 5 1 & 1 S0 =
Input B 1= 0 3 =
Input 7 1 = n = 1 =
Input 8 e 0 3 i
Input 3 1 = 0 3 1 =
Input 10 1 = 0 3 T H

Setup orthog Iisationsl

View design | Efficiency l Done l

The implicit assumption

here is that data from all
subjects have the same
uncertainty and are all

s independent




Examples of exchangeability:
Two groups unpaired

[ NON | |X| General Linear Model
EVs ] Contrasts & F-testsl O e o I P I P 2
NumberofmainEVle — rlglna erl I I erl I I ° oo
Mumber of additional, voxel-dependent EVs ID -
Paste | Group EV1 Eve 1
|group A |group B
Input 1 1 = 1 EE0 =
Input 2 i H 1 5 [0 3 2
Input 3 e 1 S0 =
Input 4 e 1 EE0 =
s | [T 2| [ 2 [0 2 3
Input 6 1= 0 EE =
Input 7 1 =5 0 e =
Input 8 1 = 0 Shl1 =
Input 9 1 = 0 EE =
Input 10 1 =B 0 Sl 5
Setup orthogdrfalisations | 5

View design | Efficiency | Done I

X Modei

T T e T T = T = S =S e

group A group B
Cl group & > group B 1 -1
C2 group B > group A -1 1




Examples of exchangeability:
Single group average

X| General Linear Model
EVs I Contrasts & F-testsl

Number of main EVs |1 -
MNumber of additional, voxel-dependent EVs |D —

Paste | Group EV1
'g Here we model a single

o mean and want to know if
that is different from zero

ﬂ
o
c

o
I»

1

1

1

Input 4 1
Input 5 1
Input 6 1
1

1

1

1

Input 7
Input 8
Input 3
Input 10

[ L L L[4[ (4[] [ 4]0 4[> 4[>
L L L LA (4[| (4[] [ 4]0 4]0 4[>

View design | Efficiency I Done |

* But there isn’t really
® (X Moo anything to permute, or
is there?

o e A |

group A
Cl Awg activation 1



Examples of exchangeability:
Single group average

X| General Linear Model

EVs I Contrasts & F-testsl

Number of main EVs [T 3 Orlglnal
MNumber of additional, voxel-dependent EVs |D —

Paste | Group EV1 | | | |

group A —I_

Input 1 1 = 1 =

Input 2 1 5 1 & _I_

Input 3 i -

Input 4 il 1 H

Input 5 i e _I_

Input B i -

Input 7 1 = 1 =

Input 8 1 5 1 =

Input 9 1T a2 [1 2 BN
Input 10 T M 1 . 006 ¢ ; :

° B i -3 -2 -1 ¢ 2 * 3

View design Efficiency | Done |

@® |\ Model : ; \ . : -

ol i

group A -4 -2 0 2 4

Cl Avg activation 1



Examples of exchangeability:
Single group average

X| General Linear Model

EVs I Contrasts & F-testsl

Number of main EVs [T 3 Fi rst fl i P
MNumber of additional, voxel-dependent EVs m

Paste | Group EV1 | | | | |

oA T

Input 1 1 = 1 =

Input 2 I H I H

Input 3 1 3 i

Input 4 1 = 1 =

Input 5 i e

Input 6 1 3 1 3

Input 7 1 3 1 =

Input 8 I H I H

Input 9 i i
Input 10 1 = 1 = ¢ . 466 ¢ ¢

-3 -2 -1 3

View design Efficiency | Done |

@® \ Model : ; . : : i

o e A |

group A 4 5
Cl Awg activation 1



Examples of exchangeability:
Single group average

X| General Linear Model

EVs I Contrasts & F-testsl

Mumber of main EVSW Second fIiP

MNumber of additional, voxel-dependent EVs |U -

Paste | Grop  EVI | | | | |
group A
Input 1 1 = 1 =
Input 2 I H I H
Input 3 i N
Input 4 1 = 1 =
Input 5 i i
Input 6 i 1 =
Input 7 1 = 1 =
Input 8 I H I H
Input 9 i i
e E e e o @

View design Efficiency | Done I

@® \ Model : ; . : : i

o e e |

M-.4"

=1

group A -4 g
Cl Awg activation 1



Examples of exchangeability:
Single group average

| General Linear Model

EVs l Contrasts & F-tests]
Mumber of main EVs |1 3 1T
MNumber of additional, voxel-dependent EVs |D —
Paste | Group EV1 - =
gow A +
Input 1 1 = 1 = -
Input 2 1 3 1 3 Etc ) B
Input 3 = 1 = —
Input 4 1 | , : , . : —
Input 5 e e T
Input 6 - - _I_
Input 7 1 = 1 = —
Input 8 1 & 1 = T
Input 9 = 1 = —
Input 10 1= 1=
View design Efficiency | Done ” =
® © ® X Model 4
1
il —_
1 —
1
1 ——
1 .
1 -—
1
1 .
1

group A
Cl Avg activation 1



Examples of exchangeability:
Single group average

| General Linear Model

EVs I Contrasts & F-tests]

Mumber of main EVs |1 3
MNumber of additional, voxel-dependent EVs |D —
ﬂ‘ Group EV1
‘group A

Input 1 1 = 1 =

Input 2 1 1

Input 3 1 1

Input 4 1 1

Input 5 1 & 1 5

Input B - -

Input 7 = 1

Input 8 1 1

Input 9 1 1 -4 -2 0 2 4
Input 10 1 1

View design | Efficiency | Done ”

* And the assumptions are:

008 (3 uais ® Symmetric errors
® Errors independent

® Subjects drawn from a single population



EVs I Contrasts & F-testsl

MNumber of main EVSIB -
Pastel Group

Input 1

Input 2
Input 3
Input 4
Input 5
Input 6
Input 7
Input 8
Input 9
Input 10

|X| General Linear Model

Examples of exchangeability:
Two groups paired

Mumber of additional, voxel-dependent EVs |D —
EV1 Eve Ev3 Evd EVS EVE
|A>B |Subj T |Subj2  |Subj3  |Subj4  |Subj5
] i . 0 3 = 0 3 0 3
1 H -1 3 s i H 0 H 0 3 0 3
2 T H 0 3 i H 0o 3 0D = 0 3
2 s\ s 05 TS 0 5 0 S —a—
a = l 0 3 = 0 3 0 3
a3 H -1 3 = H 0 3 T H 0 3 i ]
4 3 1 H 0 3= 0 3 o H 1 H 0 3
4 3 -1 3 0 3 s 0o 3 1 = 0 3
5 H 1 = 0 3 0 3 D = 0 3 1 =
5 -1 3 0 3 0 3 o= 0 3 1 =
isations |

Here we can only
exchange scans within
each subject. l.e. Input |
for Input 2, Input 3 for
Input 4 etc

L NN _
1
1
2
2
3
3
4
4
5
5
cl &B

C2 B»A

View design I Efficiency I Done I

A>B
1
=il

0
0

X! Model

| [y

Subj 1 Subj 2 Subj 3 Subj 4 Subj 5

0
0

0
0

0
0

0
0




Examples of exchangeability:

Two groups paired

cve | Conpastsa Fiesn Assumed covariance matrix
Mumber of main EVs m

Mumber of additional, voxel-dependent EVs ID —

Paste | Group EV1 EvZ EV3 EV4 EVS EVE .

\A=B |Subj 1 |Subj2  |Subj3  |Subjd4  |SubjS
Input 1
Input 2
Input 3

1 0 0 0 0
Input 4
Input 5
Input 6
Input 7

Input 8
Input 9
Input 10

Setup orthog

> Allowed

(A L[| 4[] (4]0 (4]0 | 4]0 | (4]0 | [4[0|[4]n{14]>
(A 4[| 4[] (4[| (4]0 | (4]0 | (4]0 | (4]0 |[4]2|14]>

IR LR IS AR LR IR TR LRI 4IRS

a| o & o ||l ==
(A0 [0 [0 [4[0| (4]0 | [4[0| (4]0 | [4]p|[4]>| 4>
(A1 L[| 4[] (4[| (4[> | (4]0 | (4]0 | 4]0 |[4]p|14]»
ololololololol o=
(A1 L[| 4[] (4]0 | (4[> | (410 | (4]0 | 4]0 | [ 4]2|[4]»
o|lo|lo|lolo|o|=|=|o
(A1 L[| 4[] 40| (4[> | 4[> | (4[> | 4]0 | 412 |[4]»
o|lololo|=|=|olo|lo
o|lol=|=|o|o|o|o|o
- —=|lololololololo

isations |

View design | Efficiency I Done I

The implicit assumption here

- is that data from all subjects
have the same uncertainty
and that there is no

: dependence between subjects

C2 B>A -1 U U 0 IJ D



Examples of exchangeability:

Two groups paired

cve | Conpastsa Fiesn Assumed covariance matrix
Mumber of main EVs m

Mumber of additional, voxel-dependent EVs ID —

Paste | Group EV1 EV2 EV3 Evd EVS EVE . D i Sa Wed

A-B Subj 1 [Subi2 [Subi3 [Subi4 [SubjS

Input 1 1 2\ [T 2 [ 2 [02 [0o2 02 [0 2
mp2z [T 2\ [ 2 [+ 2 [0 2 [0 2 [0 2 [0 2
3 [[2 2Y [T 2 [0 2 [ 2 [0 2 [0 2 [0 2
mpud (2 2V 2 [0 2 [T 2 [0 2 [02 |02
s [ 2| 2 [ 2 [0 2 [ 2 [0 2 [0 =
s | [3 2 | [ 2 [0 2 [0 2 [ & [0 2 [0 2
mpt? {4 2] [ 2 [0 2 [0 2 [0 2 [T 2 [0 2
8 \[4 2 [ 2 [0 2 [0 2 [0 2 [T 2 [0 =2
mpt8 \|5 2f [ 2 [0 2 [0 2 [0 2 [0 2 [1 =
mpt1o \5 2f [ 2 [0 2 [0 2 [0 2 [0 2 [ 2

Setup orthogomélisations |

View design | Efficiency I Done I

The implicit assumption here

- is that data from all subjects
have the same uncertainty
and that there is no

: dependence between subjects

C2 B>A -1 U U 0 IJ D



EVs l Contrasts & F-testsl

Paste |

Input 1

Input 2
Input 3
Input 4
Input 5
Input 6
Input 7
Input 8
Input 9
Input 10

|X| General Linear Model

Examples of exchangeability:
Two groups paired

Number of main EVs |Ei —
Mumber of additional, voxel-dependent EVs |El -
Group EV1 EVZ EV3 Ev4 EVS EVE
|A>B |Subj T |Subj2  |Subj3  |Subj4  |Subj5
1 =B 1 5 1 =5 0 3 0o 3 0 3 0 3
1= -1 3 1= 0 3 0o 3 0 3 0 3
2 2\ [T 2 [0 2 [ 2 [0 2 [0 2 [0 2
z 21 2 [0 2 [ 2 [0 2 [0 2 [0 2
3 = 1 = 0 3 0o 3 1 = 0 3 0 3
3 = -1 3 0 3 0o 3 1 B 0o 3 0 3
4 3 s 0 3 0 3 0o 3 e 0 3
4 2 [ 2 [0 2 [02 [02 [ 2 [0 2
5 2 [ 2 [0 2 [02 [02 [02 [ 2
5 B -1 3 0 3 0o 3 0o 3 0 3 1 =
isations |

0@
1
1
2
2
3
3
4
4
5
5
Cl A>B

C2 B»A

View design | Efficiency | Done |

A>B
1
-1

0
0

X Model

| [y

Subj 1 Subj 2 Subj 3 Subj 4 Subj S

0
0

0
0

0
0

0
0

Original Perm | Perm 2

2




Examples of exchangeability
blocked ANOVA

|X| General Linear Model

EVs l Contrasts & F-testsl

We can

Same as previous

only swap labels within

each subject

]
=

MNumber of main EVs |7

]
-]

Number of additional, voxel-dependent EVs |0

EV7
S5

EVE
|Subjd

EVS
[Subi3

Evd
Subj2

EV3
|Subj1

EV2
B-C

EV1

A-B

Group

Paste

IR TR R TR R R R R
olo|lo|o|lo|o olo|lolo|lo|—|—|—
SRR RN ERIRIRIE I RIS
oo o0 oo |o oo|—|—|—|O0|l0 |0
CII IR IR AR R R IR E ERI R IREI
olo|lo|o|o|o —|—|lojlolo|lo|o|o
CIIEIIE ﬂﬂﬂﬂﬂﬂﬂ*ﬂﬂﬂﬂﬂﬂﬂﬁﬂﬂﬂﬂﬂﬂ v
ololo|l—|—|—ojolojo|lo|lo|lo|lo|o
CIIEIRI IR I IR RIRIEIR TR IR I R R RIEI)
— |— |— O 0|00 o |00 |0o|o|o|0O
SRR IRIEIRIEIRIR LRI I R R
ol|l—|7 |o|l—|7 |o M (=1 Kl A (=1 Kl
CIEII IR R IR IR R EIREIR E ERIRI R
— |7 lol—|7 o~ o|l— |5 |o|l—|7 |o

Setup orthogonalisations |

View design | Efficiency | Done |

[X| Model

= h

H o+ o+ NN N MM M R S S W WW

B>t Subjl Subj2 Subj3 Subjd  SubiS

A>B
1
0
1

cl A>B
€2 BC
€3 AC



Examples of exchangeability

blocked ANOVA

X| General Linear Model

| JON

Assumed covariance matrix

EVs ] Contrasts & F-tests]

a
L]

MNumber of main EVs |7

=
-]

Number of additional, voxel-dependent EVs |0

EV7
[Subj5

EVE
Subjd

EVS
ISubj3

Ev4
Subj2

EV3
Subj1

EV2
|B>C

EV1

|A>B

Group

Paste

KRR IR EIRI EIRICI R R

KICICIIEIRI RIEICIIE

KRR RN IR R KR RTRIEI

IR IR

KIS

IR IR

KRR R IR I R KR

EIEICIIEIRI I K

K EIRIRI EIRI IRI CIR RIRI RIIE

KRR I K

KRR RN R R KRR

KIRIEIRIE IR NI

Setup orthogonalisations |

View design | Efficiency | Done I‘

jects

All sub

Assumptions
from the same “population”,

X| Model

= h

¢¢

no dependence between
subjects and “compound
symmetry’’ within subjects

R B o B o N = B = I = I e B o B o B (A (R N ¥ B ¥ T ¥y }

B>t Subjl Subj2 Subj3 Subjd  SubiS

A>B
1
0
1

cl A>B
c2 B>C
C3 A>C



Examples of exchangeability

blocked ANOVA

X| General Linear Model

| JON

Assumed covariance matrix

EVs ] Contrasts & F-tests]

a
L]

MNumber of main EVs |7

=
-]

Number of additional, voxel-dependent EVs |0

EV7
[Subj5

EVE
Subjd

EVS
ISubj3

Ev4
Subj2

EV3
Subj1

EV2
|B>C

EV1

|A>B

Group

Paste

KRR IR EIRI EIRICI R R

KICICIIEIRI RIEICIIE

KRR RN IR R KR RTRIEI

IR IR

KIS

IR IR

KRR R IR I R KR

EIEICIIEIRI I K

K EIRIRI EIRI IRI CIR RIRI RIIE

KRR I K

KRR RN R R KRR

KIRIEIRIE IR NI

Setup orthogonalisations |

View design | Efficiency | Done I‘

jects

All sub

Assumptions
from the same “population”,

X| Model

= h

¢¢

no dependence between
subjects and “compound
symmetry’’ within subjects

R B o B o N = B = I = I e B o B o B (A (R N ¥ B ¥ T ¥y }

B>t Subjl Subj2 Subj3 Subjd  SubiS

A>B
1
0
1

cl A>B
c2 B>C
C3 A>C



Examples of exchangeability

blocked ANOVA

X| General Linear Model

| JON

Assumed covariance matrix

EVs ] Contrasts & F-tests]

a
L]

MNumber of main EVs |7

=
-]

Number of additional, voxel-dependent EVs |0

EV7
[Subj5

EVE
Subjd

EVS
ISubj3

Ev4
Subj2

EV3
Subj1

EV2
|B>C

EV1

|A>B

Group

Paste

KRR IR EIRI EIRICI R R

KICICIIEIRI RIEICIIE

KRR RN IR R KR RTRIEI

IR IR

KIS

IR IR

KRR R IR I R KR

EIEICIIEIRI I K

K EIRIRI EIRI IRI CIR RIRI RIIE

KRR I K

KRR RN R R KRR

KIRIEIRIE IR NI

Setup orthogonalisations |

View design | Efficiency | Done I‘

jects

All sub

Assumptions
from the same “population”,

X| Model

= h

¢¢

no dependence between
subjects and “compound
symmetry’’ within subjects

R B o B o N = B = I = I e B o B o B (A (R N ¥ B ¥ T ¥y }

B>t Subjl Subj2 Subj3 Subjd  SubiS

A>B
1
0
1

cl A>B
c2 B>C
C3 A>C



My advice: Keep it simple!

Each subject
scanned like this

00 ® X Model

Painl Pain2 Pain3d paind

We want to find areas that
respond “linearly” to pain.

€l Little pain
C2 More pain

C3 Lots of pain
c4 Ouch!

[ T e s e
= o o o

o o o =
o o = O

Taking 4 contrasts
to 2nd level



My advice: Keep it simple!

Each subject Repeatlng this for four subjects
scanned like this ®C X Model
1
x| Model ! 1
1
1
2
2
2
| 2
3
3
3
3
| 4
pa;ntl 4
4
4
Taklng 4 contrasts Pa1n2>1 Pa1n3>2 Pa1n4>3 Subjl Sub]2 Su.b]3 Su.b]4

to 2nd Ievel Cl Linear Pain



My advice: Keep it simple!

X Model

iiiii! | You have to assume

Pa n2>1P n3>2P n4>3 SU.b]l Su.b]2 Subj3 Sub]dl thls Covarlance matrlx

&&&&MMMMNNMNHHHH.

Cl Linea

—

And ﬁgure out thls

contrast Why put yourself

through all that pain?



My advice: Keep it simple!

o0O X Model

Painl Pain2 Pain3d paind
Cl Linear pain -3 -1 1 3

When you can take a
single contrast from
the first level

And get this at the

second level
® O © [X Model

1
1
1
1

Linear Paa
Cl Linear Pain 1

Assuming only
symmetric errors

Much nicer, no!?



Warning pertaining to FSL 6.0.1

. NON ) % FEAT - FMRI Expert Analysis Tool v6.00

Higher-level analysis —-| Statistics —-|

Mise ] Data] ] Stats I Post—statsl

Randomise — | Permutatinnsl 5000 5

_I se automatic outlier de-weighting

Model setup wizard

Full model setup

@ O @ x| Model..

“~ single group average
~ WO groups, unpaired
~ tWo groups, paired

Frocess

Go Save Load | Exit | Help | Utilsl |

Do not use the Model setup

wizard together with
Randomise in FSL 6.0. |




Qutline

Null-hypothesis and Null-distribution
Multiple comparisons and Family-wise error
Different ways of being surprised

® Voxel-wise inference (Maximum z)

® (Cluster-wise inference (Maximum size)
Parametric vs hon-parametric tests
Enhanced clusters

FDR - False Discovery Rate



Clustering cookbook

Instead of resel-based correction, we can do clustering:

Z stat image

Threshold at
(arbitrary!) z level




Clustering cookbook

Instead of resel-based correction, we can do clustering

Z stat image

Threshold at
(arbitrary!) z level

Form clusters from surviving voxels.
Calculate the size threshold u(R,z).
Any cluster larger than u “survives” and we reject

the null-hypothesis for that.



How do we choose the
(arbitrary!) z-threshold?

This is arbitrary and a trade-off
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clusters with small spatial extent and high z




How do we choose the
(arbitrary!) z-threshold?

This is arbitrary and a trade-off

|. Low threshold - can violate RFT
assumptions, but can detect clusters with large

spatial extent and low z z-threshold —

2. High threshold - gives more power to z-threshold i

clusters with small spatial extent and high z

Tends to be more sensitive than voxel-wise corrected testing

Results depend on extent of spatial smoothing in pre-processing



TFCE

Threshold-Free Cluster Enhancement
[Smith & Nichols, Neurolmage 2009]

* Cluster thresholding:
e popular because it’s sensitive, due to its use of spatial extent
* but the pre-smoothing extent is arbitrary
* and so is the cluster-forming threshold
= unstable and arbitrary

e TFCE
* integrates cluster “scores”
over all possible thresholds
* output at each voxel is measure
of local cluster-like support

N o e o o o | e
* similar sensitivity to OPt|ma| The TFCE value at point p is given by the sum,

cluster-th resholding but stable over the shaded area, of the score from each
’ contributing incremental section:

and non-arbitrary TFCE(p) = 3 e(h)E . h¥




Qualitative example

original
signal
- TFCE

enhancement




TFCE for FSL-VBM

cluster-based (red)




TFCE for TBSS

controls > schizophrenics
p<0.05 corrected for multiple comparisons across space, using
randomise

cluster-based:
cluster-forming
threshold =

2 or 3

TFCE




Qutline

Null-hypothesis and Null-distribution
Multiple comparisons and Family-wise error
Different ways of being surprised

® Voxel-wise inference (Maximum z)

® (Cluster-wise inference (Maximum size)
Parametric vs hon-parametric tests
Enhanced clusters

FDR - False Discovery Rate



False Discovery Rate

FDR: False Discovery Rate
A “new” way to look at inference.

Uncorrected (for multiple-comparisons):

* |s equivalent to saying:*| am happy to nearly always say
something silly about my experiments”.

* On average, 5% of all voxels are false positives

Family-Wise Error (FWE):

* Is equivalent to saying:“| am happy to say something silly
about 5% of my experiments”.

* On average, 5% of all experiments have one or more
false positive voxels

False Discovery Rate

 |s equivalent to sayin%:“l am happy if 5% of what | say about
each experiment is silly”.
* On average, 5% of significant voxels are false positives



Little imaging demonstration.

Noise

Signal

Signal+Noise
‘.‘r; ‘*'?‘;‘.




uncorrected voxelwise control of FP rate at 10%

percentage of all null pixels that are False Positives

control of FamilyWise Error rate at 10%

occurrence of FamilyWise Error

control of False Discovery Rate at 10%

'
- T .
-
)
.
L]

percentage of activated (reported) pixels that are False Positives




FDR for dummies

Makes assumptions about how errors are
distributed (like GRT).

Used to calculate a threshold.

Threshold such that X% of super-threshold
(reported) voxels are false positives.

Threshold depends on the data. May for example
be very different for [I 0] and [0 |] in the same
study.



