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Energy consumption in the brain

* Brain < 2% body weight but
consumes ~20% of total
energy

e estimated 60-80% of this
energy used to support
communication between cells

» task-evoked activity accounts
for ~1%

Raichle et al (2001), Gusnard et al (2001)

Oxygen consumption
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https://doi.org/10.1073/pnas.98.2.676
https://www.nature.com/articles/35094500

Why study the brain at rest?

* Localisation versus connectivity Finger tapping Rest

« Understand the inherent functional organisation
of the brain

 Clinical/ cognitive biomarker

 Pragmatic benefits: can be done in any
population, with relatively little setup and
expertise required

Biswal et al (1995), Sheline et al (2010)



https://onlinelibrary.wiley.com/doi/abs/10.1002/mrm.1910340409?sid=nlm:pubmed
https://www.jneurosci.org/content/30/50/17035

Principles of resting state analysis

Many different methods available for
analysis

All have one assumption in common:

l.e. definition of functional connectivity is
based on a statistical dependency between
timeseries

Differences between methods lie in the way
these similarities are estimated and/or
represented

If two brain
regions show
similarities in

their BOLD

timeseries, they
are functionally
connected



Types of connectivity

Functional connectivity

« Statistical dependency

Dvnamic connectivity

« Changes in functional connectivity over time

Effective connectivity

e Directional influence

Anatomical (structural) connectivity

 Presence of a white matter tract
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Resting state methods

ICA

Multivariate voxel-
based approach

Finds interesting
structure in the data

Exploratory “model-
free” method

Spatial approach

Network modelling

- Node-based approach
(first need to parcellate
the brain into functional
regions)

- Map connections
between specific brain
regions (connectomics)

- Temporal approach



Model-based (GLM)
analysis

- ST

- model each measured time-series as a linear
combination of signal and noise

- It the design matrix does not capture every signal,
we typically get wrong inferences!



Data Analysis

Confirmatory —xploratory
- "How well does my - "Is there anything
model fit to the data”?” interesting in the data?”
Problem =» Data = Problem =» Data =
=» Results =» Results
- results depend on the — can give unexpected

model results



-FMRI Inferential path

=Xperiment
H B BN
Interpretation mmm PhysiOl
Siolo
of final results “m = m \ g ¥



http://mos.ru

Variabllity in FIVIRI

=Xperiment

suboptimal event timing,
inefficient design, etc.

2hysiology

secondary activation, Ill-
defined baseline, resting-
fluctuations etc.

Analysis MR Physics
filtering & sampling artefacts, design MR noise,
misspecification, stats & field inhomogeneity,

thresholding issues etc. MR artefacts etc.


http://mos.ru

Model-free”

-l
 l
-

There is no explicit time-series model
of assumed ‘activity’



Model-free”
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There is an underlying mathematical
(generative) model



Decomposition techniques

- try to ‘explain’ / represent the data
- by calculating quantities that summarise the data

- by extracting underlying ‘hidden’ features that are
‘Interesting’

- differ in what is considered ‘interesting’
- are localised in time and/or space (Clustering)
- explain observed data variance (PCA, FDA, FA)

- are maximally independent (ICA)



Melodic

Mmultivariate linear decomposition:
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FMRI data
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decomposed into components




Melodic

multivariate linear decomposition:

Y = X X B

Data Is represented as a 2D matrix and
decomposed into components




What are components”

i

X

:
:

{ 9§

- express observed
data as linear
combination of
spatio-temporal
DrOCESSES

- techniques differ In
the way data is
represented by
components

BB -




Spatial ICA for FMRI

awn

space components space
ﬁ ﬁ
= 3
—_ 0 0 - © i
- c = X S .
FMRI data 3 = > spatial maps
5 3

- data iIs decomposed into a set of spatially
iINndependent maps and a set of time-courses

=2 McKeown et al.

5 HBM 1998




Independence
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PCA vs. ICA 7
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PCA vs. ICA 7
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PCA vs. ICA

 PCA finds projections of

maximum amount of variance
in Gaussian data (uses 2nd o
order statistics only) !

(Gaussian data



PCA vs. ICA

 PCA finds projections of

maximum amount of variance
in Gaussian data (uses 2nd
order statistics only)

* Independent Component
Analysis (ICA) finds
projections of maximal
independence in non-

Gaussian data (using higher- = = = = 7 = 7=
order statistics) non-Gaussian

data



Correlation vs. independence

Plot x vs. y
* de-correlated °
signals can still be -
dependent 'ii
* higher-order "
statistics (beyond U e
mean and variance) riah order correlations
can reveal these 29
dependencies :

=sin(z)?

i Stone et al. 2002

0.0

0.0 0.5 1.0 1.5

x° = cos(z)?



Non-Gaussianity
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|CA estimation

® Random mixing results in more Gaussian-
shaped PDFs (Central Limit Theorem)

® conversely:

if mixing matrix produces less Gaussian-
shaped PDFs this is unlikely to be a random
result

B measure non-Gaussianity

® can use neg-entropy as a measure of non-
Gaussianity

:i;| Hyvarinen & Oja 1997



|CA estimation

- need to find an unmixing matrix such that the
dependency between estimated sources is
minimised

- need () a contrast (objective/cost) function to
drive the unmixing which measures statistical
independence and (ii) an optimisation technique:

- kurtosis or cumulants & gradient descent

- maximum entropy & gradient descent

- neg-entropy & fixed point iteration



Overfitting & thresholding



The ‘overtitting’ problem

fitting a noise-free model to noisy observations:

- no control over signal vs. noise (hon-interpretable
results)

- statistical significance testing not possible

GLM analysis standard ICA (unconstrained)




Probabllistic ICA model

statistical “latent variables” model: we observe linear
mixtures of hidden sources in the presence of Gaussian
noise

H I 3 g
[ - .
3 :
l FMRI data - l & g' spatial maps + NOISe

Y = X B + E

ISsues:
- Model Order Selection: how many components”?

- Inference: how to threshold [Cs?



I\/\ode\ Order Selection

OW many components’?

under-fitting: the amount
of explained data

variance is insufficient to
obtain good estimates of

the signals Tl overfitting: the inclusion of

too many components leads
to fragmentation of signal
across multiple component
maps, reducing the ability to
identify the signals of interest

3 optimal fitting: the amount of
explained data variance is sufficient

G

to obtain good estimates of the
| signals while preventing further splits
iInto spurious components




Model Order Selection

optimal fit

over-fitting

o 50 100 150
#components

—— oObserved Eigenspectrum of the data covariance matrix
Laplace approximation of the posterior probability of the model order

=-=' theoretical Eigenspectrum from Gaussian noise
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Model Order Selection

optimal fit

over-fitting

o 50 100 150
#components

—— oObserved Eigenspectrum of the data covariance matrix
Laplace approximation of the posterior probability of the model order

=-=' theoretical Eigenspectrum from Gaussian noise



Thresholding

raw Z transformed IC map (1 - 99 percentile)

Mixture Model probability map

thresholded IC map  alternative hypothesis test at p > 0.5

¢ 88




- classical null-hypothesis

Thresholding

testing is invalid

data Is assumed to be a
linear combination of
signals and noise

the distribution of the
estimated spatial maps
IS a mixture distribution!

right tail




Alternative Hypothesis lest

1IC_1 GGM(3) fit

— 0.1& 4.1‘ -1 .5
- 0,727 4.57 0.372
— 0.853 0.07377 0.07339

-3 0 3 6 9

- use Gaussian/Gamma mixture model fitted to the histogram
of intensity values (using EM)



What about overlap®




What about overlap®

ICA after
thresholding

solution

Sources +

Sources

NOISE
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Artefact detection

- FMRI data contain a variety of source processes

- Artifactual sources typically have unknown
spatial and temporal extent and cannot easily be
modelled accurately

- Exploratory techniques do not require a priori
<nowledge of time-courses and spatial maps
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manual classification

START

Clearly RS
(sub)network/
node?

yes

2) TIME SERIES

Smooth /
regular?

yes

Low
frequency
only?

1) SPATIAL MAP

3) POWER SPECTRUM

Is any of the
following
predominant?

a.0verlap brain

no boundaries

b.Overlap vessels

c.Overlap CSF

d.Overlap WM

e.Alternating slices

f. Alternating positive/
negative clusters

g.Overlap EPI dropouts

Is any of the
following
present?

NO |a. Sudden jumps
b. Sudden change
of oscillation
pattern

yes

High frequency
only?

INNOCENT
(SIGNAL)

LACK OF EVIDENCE

(UNKNOWN)
Most likely...
* Aclear mix of signal and noise
* Neither clearly signal nor clearly noise

Most likely...

a.Motion

b.Physiological noise
(veins/arteries)

¢.CSF pulsation

d. WM

e.MRI-related
(multiband)

f. MRI-related

g.Susceptibility

Most likely...
Motion or MR-
related

(check motion
parameters)

Griffanti et al (2016).
https://doi.org/10.1016/j.neuroimage.2016.12.036


https://doi.org/10.1016/j.neuroimage.2016.12.036

|CA-based denoising




|CA-based denoising
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|CA-based denoising

Y = XB +
I\ cleaned fMRI data



semi-automatic classification

signal J

Or-

noise x

» classifier

component label



semi-automatic classification

o X (fsl.fmrib.ox.ac.uk/fsl/fsiwiki/FIX)

e (Classifier with many features

* Requires manually labelled training data

* 99% accuracy on high-quality data


http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX

semi-automatic classification

o X (fsl.fmrib.ox.ac.uk/fsl/fsiwiki/FIX)

e (Classifier with many features

* Requires manually labelled training data

* 99% accuracy on high-quality data

e |CA-AROMA (github.com/rhr-pruim/ICA-AROMA)

» Simple classifier with only 4 features
* No training data required

* Mainly designed for motion artefacts


http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX
http://github.com/rhr-pruim/ICA-AROMA
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Different |ICA models
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Different |ICA models

each subject has SAME timeseries
e.g.activation FMR|

-
Single-Session ICA N——iss | =
each ICA component comprises: FMRI data Y El spatial maps
spatial map & timecourse
-
~
. | conponeng wo____
Multi-Session or Multi-Subject ICA: | : 8
Concatenation approach FMRI data 1 8 ‘ ks
| |
good when: ; 3
each subject has DIFFERENT timeseries FMRI data 2
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_ . .
~
Multi-Session or Multi-Subject ICA: N
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: _ comeneyy & §]
good when: MR data 3 a' spatial maps




awn

awn

voxels

Concatenated ICA

- (Concatenate all subjects’ data temporally

- Then run ICA

- More appropriate than tensor ICA (for RSNS)

Subject |

Subject 2

awn

#components

XlJ3ew
Suixiwu dnous

syusuodwod#

voxels

group ICA maps




awn

awn

Concatenated ICA

e Data sets must be registered to a common space
(anatomical alignment)

 Memory optimisation trick (called MIGP) means
that time courses are not interpretable

voxels

Subject |

Subject 2

awn

#components

XlJ3ew
Suixiwu dnous

syusuodwod#

voxels

group |ICA maps




Resting state multi-subject ICA

- Why not just run ICA on each subject separately”

- Correspondence problem (eg RSNs across
subjects)

- Different splittings sometimes caused by small
changes in the data (naughty ICAl)

- Instead - start with a “group-average” |ICA

- But then need to relate group maps back to the
individual subjects




Resting state networks




Resting state ftMRI and ICA

»Introduction to resting state
+ Independent Component Analysis

+ Single-subject ICA

» Multi-subject ICA

- Dual regression



Resting state multi-subject ICA

Group ICA map




Dual Regression

Two steps that both involve
Multiple regression:

1. Extract subject timeseries

2. Extract subject maps




Dual Regression

voxels #components time 1 . Regl’eSS gI’OUp mapS ”TtO

awn

each subject’s 4D data to
find subject-specific
timecourses

S|OXOA

time
courses |

syusuodwodH

2. Regress these timecourses
pack into the 4D data to
find subject-specific spatial
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Dual Regression

Group ICA map




Running dual_regression

e OO0 N beckmann — bash — bash — 142x23 "

[islay:™] dual_regression.sh
dual_regression v8.5 (beta)
**¥NOTE*** ORDER OF COMMAND-LINE ARGUMENTS 1S DIFFERENT FROM PREVIOUS VERSION

: dual_regression <{group_|C_maps> <des_norm> <{design.mat> <design.con> <n_perm> <output_directory> <inputl> <input2> <input3>
dual_regression grouplCA.gica/groupmelodic. ica/melodic_IC 1 design.mat design.con 588 grot “cat grouplCA.gica/.filelist”

<{group—|C_maps_40> 40 image containing spatial IC maps (melodic_IC) from the whole-group ICA analysis

{des_norm> B or 1 (1 is recommended). HWhether to variance-normalise the timecourses used as the stage-2 regressors
<{design.mat > Design matrix for final cross-subject modelling with randomise

{design.con?> Design contrasts for final cross-subject modelling with randomise

{n_perm> Number of permutations for randomise; set to 1 for just raw tstat output, set to 8 to not run randomise at all.
<output_directory> This directory will be created to hold all output and logfiles

<inputl?> <input2> ... List all subjects' preprocessed, standard-space 40 datasets

{design.mat> <design.con?> can be replaced with just
=1 for group-mean (one-group t-test) modelling.
|f you need to add other randomise option then just edit the line after "EDIT HERE" below

SEICTEN |

 FSL command line tool, combining:
* DR to create subject-wise estimates (stage 1 + stage 2)

e (Group comparison using randomise (stage 3)



Group comparison

- Collect maps and perform voxel-wise test (e.g.
randomisation test on GLM)

voxels HEVs voxels

JW X group difference

- Can now do voxelwise testing across subjects, separately
for each original group ICA map

- Can choose to look at strength-and-shape differences
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Group analysis on maps
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- can use the Glm tool (GIm_gui on mac) to create GLM
design and contrast matrices



Dual regression outputs

e dr_stagel_subject[#SUBJ.txt - the timeseries
outputs of stage 1 of the dual-regression.
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Dual regression outputs

e dr_stagel_subject[#SUBJ.txt - the timeseries
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Dual regression outputs
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Dual regression outputs

dr_stagel1_subject[#SUB].txt - the timeseries

outputs of stage 1 of the dual-regression. o é i
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Dual regression outputs

dr_stagel1_subject[#SUB].txt - the timeseries
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dr_stage3_ic[#ICA]_tstat[#CON].nii.gz - the data |
output from randomise

(corrected for multiple comparisons across voxels
but not across #components!!)



e (Generate from the data using

Group template maps

ICA

e use all data to get unbiased
templates

template RSNs

https://www.fmrib.ox.ac.uk/datasets/royalsoc8/



Group template maps

e (Generate from the data using
ICA

e use all data to get unbiased
templates

e use independent control
group

* will model signals and
artefacts

template RSNs

https://www.fmrib.ox.ac.uk/datasets/royalsoc8/



Group template maps

e (Generate from the data using
ICA

e use all data to get unbiased
templates

e use independent control
group

* will model signals and
artefacts

o template RSNs
* uUse eXISTIﬂg template https://www.fmrib.ox.ac.uk/datasets/royalsoc8/



Resting state ftMRI and ICA

»Introduction to resting state

+ Independent Component Analysis

- Single-subject ICA

» Multi-subject ICA

- Dual regression



Resting state ftMRI and ICA

Introduction to

Resting State fMRI
Functional Connectivity

Available from:
Oxford University Press
- Amazon

Janine Bijsterbosch
Stephen Smith
Christian Beckmann

Series editors:
Mark Jenkinson and Michael Chappell

OXTORD



https://global.oup.com/academic/product/an-introduction-to-resting-state-fmri-functional-connectivity-9780198808220?cc=us&lang=en&
https://www.amazon.com/Introduction-Resting-Functional-Connectivity-Neuroimaging/dp/0198808224/ref=sr_1_1?dchild=1&keywords=bijsterbosch&qid=1598376225&sr=8-1

