

Resting state fMRI and ICA

- Introduction to resting state
- Independent Component Analysis
- Single-subject ICA
- Multi-subject ICA
- Dual regression

Energy consumption in the brain

- Brain < 2% body weight but consumes ~20% of total energy
- estimated 60-80% of this energy used to support communication between cells
- task-evoked activity accounts for ~1%

Raichle et al (2001), Gusnard et al (2001)

Oxygen consumption

Decreased activity during tasks (PET)

Why study the brain at rest?

- Localisation versus connectivity
- Understand the inherent functional organisation of the brain
- Clinical/ cognitive biomarker
- Pragmatic benefits: can be done in any population, with relatively little setup and expertise required

Finger tapping Rest

Biswal et al (1995), Sheline et al (2010)

Principles of resting state analysis

- Many different methods available for analysis
- All have one assumption in common:
- i.e. definition of functional connectivity is based on a statistical dependency between timeseries
- Differences between methods lie in the way these similarities are estimated and/or represented

If two brain regions show similarities in their BOLD timeseries, they are functionally connected

Types of connectivity

- Functional connectivity
 - Statistical dependency
- Dynamic connectivity
 - Changes in functional connectivity over time
- Effective connectivity
 - Directional influence
- Anatomical (structural) connectivity
 - Presence of a white matter tract

Overview of resting state methods

Voxel-based methods

Node-based methods

Overview of resting state methods

Voxel-based methods

- Seed-based correlation analysis
 - SCA
- Independent component analysis
 - ICA

Node-based methods

- Network modelling analysis
 - FSLnets
- Graph theory analysis
 - Such as degree, hub, path length

Overview of resting state methods

Voxel-based methods

- Seed-based correlation analysis
 - SCA
- Independent component analysis
 - ICA

Node-based methods

- Network modelling analysis
 - FSLnets
- Graph theory analysis
 - Such as degree, hub, path length

Resting state fMRI and ICA

- Introduction to resting state
- Independent Component Analysis
- Single-subject ICA
- Multi-subject ICA
- Dual regression

Resting state methods

ICA

- Multivariate voxelbased approach
- Finds interesting structure in the data
- Exploratory "modelfree" method
- Spatial approach

Network modelling

- Node-based approach (first need to parcellate the brain into functional regions)
- Map connections between specific brain regions (connectomics)
- Temporal approach

Model-based (GLM) analysis

- model each measured time-series as a linear combination of signal and noise
- If the design matrix does not capture every signal, we typically get wrong inferences!

Data Analysis

Confirmatory

- "How well does my model fit to the data?"

Problem → Data →

Model → Analysis

→ Results

results depend on the model

Exploratory

- "Is there anything interesting in the data?"

Problem → Data →

Analysis → Model

→ Results

can give unexpected results

FMRI inferential path

Interpretation of final results

Experiment

Physiology

Analysis

MR Physics

Image from mos.ru, released under the CC BY 4.0 license

Variability in FMRI

Experiment

Interpretation of final results

suboptimal event timing, inefficient design, etc.

Physiology

secondary activation, illdefined baseline, restingfluctuations etc.

Analysis

filtering & sampling artefacts, design misspecification, stats & thresholding issues etc.

MR Physics

MR noise, field inhomogeneity, MR artefacts etc.

Model-free?

There is no explicit time-series model of assumed 'activity'

Model-free?

 $Y^i = S^i A^i + E^i$, where $E^i_{\cdot j} \sim \mathcal{N}(0, \sigma_Y^2 I)$

There is an underlying mathematical (generative) model

Decomposition techniques

- try to 'explain' / represent the data
 - by calculating quantities that summarise the data
 - by extracting underlying 'hidden' features that are 'interesting'
- differ in what is considered 'interesting'
 - are localised in time and/or space (Clustering)
 - explain observed data variance (PCA, FDA, FA)
 - are maximally independent (ICA)

multivariate linear decomposition:

multivariate linear decomposition:

multivariate linear decomposition:

multivariate linear decomposition:

Data is represented as a 2D matrix and decomposed into components

multivariate linear decomposition:

Data is represented as a 2D matrix and decomposed into components

What are components?

 \approx

+

+

- express observed data as linear combination of spatio-temporal processes
- techniques differ in the way data is represented by components

Spatial ICA for FMRI

 data is decomposed into a set of spatially independent maps and a set of time-courses

Independence

Simulated Data

(2 components, slightly different timecourses)

Simulated Data

(2 components, slightly different timecourses)

Simulated Data

(2 components, slightly different timecourses)

PCA

- Timecourses orthogonal
- Spatial maps and timecourses "wrong"

Simulated Data

(2 components, slightly different timecourses)

PCA

- Timecourses orthogonal
- Spatial maps and timecourses "wrong"

ICA

- Timecourses non-co-linear
- Spatial maps and timecourses "right"

 PCA finds projections of maximum amount of variance in Gaussian data (uses 2nd order statistics only)

Gaussian data

- PCA finds projections of maximum amount of variance in Gaussian data (uses 2nd order statistics only)
- Independent Component Analysis (ICA) finds projections of maximal independence in non-Gaussian data (using higherorder statistics)

Correlation vs. independence

- de-correlated signals can still be dependent
- higher-order statistics (beyond mean and variance) can reveal these dependencies

Non-Gaussianity

Non-Gaussianity

ICA estimation

- Random mixing results in more Gaussianshaped PDFs (Central Limit Theorem)
- conversely:

if mixing matrix produces less Gaussianshaped PDFs this is unlikely to be a random result

- measure non-Gaussianity
- can use neg-entropy as a measure of non-Gaussianity

ICA estimation

- need to find an unmixing matrix such that the dependency between estimated sources is minimised
- need (i) a contrast (objective/cost) function to drive the unmixing which measures statistical independence and (ii) an optimisation technique:
- kurtosis or cumulants & gradient descent (Jade)
- maximum entropy & gradient descent (Infomax)
- neg-entropy & fixed point iteration (FastICA)

Overfitting & thresholding

The 'overfitting' problem

fitting a noise-free model to noisy observations:

- no control over signal vs. noise (non-interpretable results)
- statistical significance testing not possible

GLM analysis

standard ICA (unconstrained)

Probabilistic ICA model

statistical "latent variables" model: we observe linear mixtures of hidden sources in the presence of Gaussian noise

Issues:

- Model Order Selection: how many components?
- Inference: how to threshold ICs?

'How many components'?

under-fitting: the amount of explained data variance is insufficient to obtain good estimates of the signals

over-fitting: the inclusion of too many components leads to fragmentation of signal across multiple component maps, reducing the ability to identify the signals of interest

optimal fitting: the amount of explained data variance is sufficient to obtain good estimates of the signals while preventing further splits into spurious components

- —— observed Eigenspectrum of the data covariance matrix
- Laplace approximation of the posterior probability of the model order
- theoretical Eigenspectrum from Gaussian noise

- —— observed Eigenspectrum of the data covariance matrix
- Laplace approximation of the posterior probability of the model order
- theoretical Eigenspectrum from Gaussian noise

- —— observed Eigenspectrum of the data covariance matrix
- Laplace approximation of the posterior probability of the model order
- theoretical Eigenspectrum from Gaussian noise

Thresholding

Thresholding

- classical null-hypothesis testing is invalid
- data is assumed to be a linear combination of signals and noise
- the distribution of the estimated spatial maps is a mixture distribution!

Alternative Hypothesis Test

 use Gaussian/Gamma mixture model fitted to the histogram of intensity values (using EM)

What about overlap?

What about overlap?

Resting state fMRI and ICA

- Introduction to resting state
- Independent Component Analysis
- Single-subject ICA
- Multi-subject ICA
- Dual regression

Artefact detection

- FMRI data contain a variety of source processes
- Artifactual sources typically have unknown spatial and temporal extent and cannot easily be modelled accurately
- Exploratory techniques do not require a priori knowledge of time-courses and spatial maps

FSLeyes Melodic Mode

motion

cardiac

susceptibility motion

multiband

signal

effects of scan parameters

manual classification

Griffanti et al (2016).

https://doi.org/10.1016/j.neuroimage.2016.12.036

ICA-based denoising

ICA-based denoising

ICA-based denoising

semi-automatic classification

component label

semi-automatic classification

- FIX (fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX)
 - Classifier with many features
 - Requires manually labelled training data
 - 99% accuracy on high-quality data

semi-automatic classification

- FIX (fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIX)
 - Classifier with many features
 - Requires manually labelled training data
 - 99% accuracy on high-quality data
- ICA-AROMA (github.com/rhr-pruim/ICA-AROMA)
 - Simple classifier with only 4 features
 - No training data required
 - Mainly designed for motion artefacts

Resting state fMRI and ICA

- Introduction to resting state
- Independent Component Analysis
- Single-subject ICA
- Multi-subject ICA
- Dual regression

Resting state fMRI and ICA

- Introduction to resting state
- Independent Component Analysis
- Single-subject ICA
- Multi-subject ICA
- Dual regression

Different ICA models

Single-Session ICA

spatial map & timecourse

Multi-Session or Multi-Subject ICA: **Concatenation approach**

each ICA component comprises:

spatial map & timecourse (that can be split up into subject-specific chunks)

Multi-Session or Multi-Subject ICA: **Tensor-ICA** approach

each ICA component comprises:

spatial map, session-long-timecourse & subject-strength plot ___

Different ICA models

Single-Session ICA

each ICA component comprises:
spatial map & timecourse

Multi-Session or Multi-Subject ICA: **Concatenation approach**

good when:

each subject has DIFFERENT timeseries e.g. resting-state FMRI

Multi-Session or Multi-Subject ICA: **Tensor-ICA approach**

good when:

each subject has SAME timeseries e.g. activation FMRI

Concatenated ICA

- Concatenate all subjects' data temporally
- Then run ICA
- More appropriate than tensor ICA (for RSNs)

Concatenated ICA

- Data sets must be registered to a common space (anatomical alignment)
- Memory optimisation trick (called MIGP) means that time courses are not interpretable

Resting state multi-subject ICA

- Why not just run ICA on each subject separately?
 - Correspondence problem (eg RSNs across subjects)
 - Different splittings sometimes caused by small changes in the data (naughty ICA!)
- Instead start with a "group-average" ICA
 - But then need to relate group maps back to the individual subjects

Resting state networks

Resting state fMRI and ICA

- Introduction to resting state
- Independent Component Analysis
- Single-subject ICA
- Multi-subject ICA
- Dual regression

Resting state multi-subject ICA

Dual Regression

Two steps that both involve multiple regression:

1. Extract subject timeseries

2. Extract subject maps

Dual Regression

Dual Regression

Running dual_regression

```
\Theta \Theta \Theta
                                                     ♠ beckmann — bash — bash — 142×23
[islay:~] dual_regression.sh
dual_regression v0.5 (beta)
***NOTE*** ORDER OF COMMAND-LINE ARGUMENTS IS DIFFERENT FROM PREVIOUS VERSION
Usage: dual_regression <group_IC_maps> <des_norm> <design.mat> <design.con> <n_perm> <output_directory> <input1> <input2> <input3> ........
       dual_regression groupICA.gica/groupmelodic.ica/melodic_IC 1 design.mat design.con 500 grot `cat groupICA.gica/.filelist`
<group_IC_maps_4D>
                               4D image containing spatial IC maps (melodic_IC) from the whole-group ICA analysis
<des_norm>
                               0 or 1 (1 is recommended). Whether to variance-normalise the timecourses used as the stage-2 regressors
                              Design matrix for final cross-subject modelling with randomise
<design.mat>
                              Design contrasts for final cross-subject modelling with randomise
<design.con>
<n_perm>
                              Number of permutations for randomise; set to 1 for just raw tstat output, set to 0 to not run randomise at all.
                              This directory will be created to hold all output and logfiles
<output_directory>
<input1> <input2> ...
                              List all subjects' preprocessed, standard-space 4D datasets
<design.mat> <design.con>
                              can be replaced with just
                               for group-mean (one-group t-test) modelling.
If you need to add other randomise option then just edit the line after "EDIT HERE" below
[islay:~]
```

- FSL command line tool, combining:
 - DR to create subject-wise estimates (stage 1 + stage 2)
 - Group comparison using randomise (stage 3)

Group comparison

Collect maps and perform voxel-wise test (e.g. randomisation test on GLM)

- Can now do voxelwise testing across subjects, separately for each original group ICA map
- Can choose to look at strength-and-shape differences

Group analysis on maps

can use the Glm tool (Glm_gui on mac) to create GLM design and contrast matrices

• dr_stage1_subject[#SUB].txt - the timeseries outputs of stage 1 of the dual-regression.

- dr_stage1_subject[#SUB].txt the timeseries outputs of stage 1 of the dual-regression.
- dr_stage2_subject[#SUB].nii.gz the spatial maps outputs of stage 2 of the dual-regression.

- dr_stage1_subject[#SUB].txt the timeseries outputs of stage 1 of the dual-regression.
- dr_stage2_subject[#SUB].nii.gz the spatial maps outputs of stage 2 of the dual-regression.
- dr_stage2_ic[#ICA].nii.gz the re-organised parameter estimate images

- dr_stage1_subject[#SUB].txt the timeseries outputs of stage 1 of the dual-regression.
- dr_stage2_subject[#SUB].nii.gz the spatial maps outputs of stage 2 of the dual-regression.
- dr_stage2_ic[#ICA].nii.gz the re-organised parameter estimate images
- dr_stage3_ic[#ICA]_tstat[#CON].nii.gz the output from randomise

- dr_stage1_subject[#SUB].txt the timeseries outputs of stage 1 of the dual-regression.
- dr_stage2_subject[#SUB].nii.gz the spatial maps outputs of stage 2 of the dual-regression.
- dr_stage2_ic[#ICA].nii.gz the re-organised parameter estimate images
- dr_stage3_ic[#ICA]_tstat[#CON].nii.gz the output from randomise

(corrected for multiple comparisons across voxels but not across #components!!)

Group template maps

- Generate from the data using ICA
 - use all data to get unbiased templates

template RSNs

https://www.fmrib.ox.ac.uk/datasets/royalsoc8/

Group template maps

- Generate from the data using ICA
 - use all data to get unbiased templates
 - use independent control group
 - will model signals and artefacts

template RSNs

https://www.fmrib.ox.ac.uk/datasets/royalsoc8/

Group template maps

- Generate from the data using ICA
 - use all data to get unbiased templates
 - use independent control group
 - will model signals and artefacts
- use existing template

template RSNs

https://www.fmrib.ox.ac.uk/datasets/royalsoc8/

Resting state fMRI and ICA

- Introduction to resting state
- Independent Component Analysis
- Single-subject ICA
- Multi-subject ICA
- Dual regression

Resting state fMRI and ICA

Available from:

- Oxford University Press
- Amazon

