
Inference 
how surprising is your statistic? (thresholding)

But ... can I 
trust it?
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• Enhanced clusters
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The task of classical 
inference

• Given some data we want to know if (e.g.) a mean is 
different from zero or if two means are different

Different?> 0 ?



Tools of classical 
inference

A null-hypothesis

Typically the opposite of what we actually “hope”, e.g.

There is no effect of 
treatment: μ = 0

There is no difference 
between groups: μ1 = μ2

1.



A null-hypothesis
A test-statistic

Assesses “trustworthiness”

Trustworthy

Untrustworthy

Tools of classical 
inference

1.
2.



A t-statistic reflects precisely this
Large difference: 

Trustworthy

Small variability: 
TrustworthyMany measurements: 

Trustworthy

Tools of classical 
inference
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A null-hypothesis
A test-statistic

Or expressed in GLM lingo

Large difference: 
Trustworthy

Small variability: 
Trustworthy Many measurements: Trustworthy
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inference
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A null-hypothesis
A test-statistic
A null-distribution

We might then get these data

Constant

Tools of classical 
inference

1.
2.
3.
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Let us assume there is no 
difference, i.e. the  

null-hypothesis is true.
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A null-hypothesis
A test-statistic
A null-distribution

Tools of classical 
inference
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A null-hypothesis
A test-statistic
A null-distribution

or we could have gotten these

Tools of classical 
inference

1.
2.
3.

=

�
�1

�2

⇥

+ e

t = �0.51

t Constant�2 = 1.28

cT �� = �0.37

t =
cT ���

�2
⇥

cT (XT X)�1c
t =

cT ���
�2

⇥
cT (XT X)�1c

�
cT (XT X)�1c
cT ���

�2



A null-hypothesis
A test-statistic
A null-distribution

maybe these

Tools of classical 
inference
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A null-hypothesis
A test-statistic
A null-distribution

or perhaps these

Tools of classical 
inference
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A null-hypothesis
A test-statistic
A null-distribution

etc

Tools of classical 
inference
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A null-hypothesis
A test-statistic
A null-distribution

Tools of classical 
inference
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And if we do this 
many many many 

many times…
t



A null-hypothesis
A test-statistic
A null-distribution

Tools of classical 
inference

1.
2.
3.

t

So, why is this 
helpful?



A null-hypothesis
A test-statistic
A null-distribution

Tools of classical 
inference

1.
2.
3.

t

Well, it for example tells 
us that in ~1% of the 
cases t > 3.00, even 

when the null-hypothesis 
is true.



A null-hypothesis
A test-statistic
A null-distribution

Tools of classical 
inference

1.
2.
3.

t

Or that in ~5% of the 
cases t > 1.99. 
When the null-

hypothesis is true.



A null-hypothesis
A test-statistic
A null-distribution

Tools of classical 
inference

1.
2.
3.

And best of all: This 
distribution is 

known i.e. one can 
calculate it.  

Much as one can 
calculate sine or 

cosine

t8

t



A null-hypothesis
A test-statistic
A null-distribution

Tools of classical 
inference

1.
2.
3.

Provided that e ~ N(0,σ2)

And best of all: This 
distribution is 

known i.e. one can 
calculate it.  

Much as one can 
calculate sine or 

cosine

t8

t



A null-hypothesis
A test-statistic
A null-distribution

An example experiment

So, with these tools let us do an experiment

H0: = , H1: >1.
2.
3.

x1 x2 x1 x2



A null-hypothesis
A test-statistic
A null-distribution

An example experiment

So, with these tools let us do an experiment

H0: = , H1: >1.
2.
3.

x1 x2 x1 x2
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A null-hypothesis
A test-statistic
A null-distribution

An example experiment

So, with these tools let us do an experiment

H0: = , H1: >1.
2.
3.

x1 x2 x1 x2

t8 = 2.64

If the null-hypothesis is 
true, we would expect to 
have a ~1.46% chance of 
finding a t-value this large 

or larger

t8



A null-hypothesis
A test-statistic
A null-distribution

An example experiment

So, with these tools let us do an experiment

H0: = , H1: >1.
2.
3.

x1 x2 x1 x2

t8 = 2.64

t8

t8 = 2.64*

There is ~1.46% risk that 
we reject the null-

hypothesis (i.e. claim we 
found something) when 
the null is actually true.
We can live with that.



False positives/negatives
• I am sure you have all heard about “false positives” 

and “false negatives”.
• But what does that actually mean?



False positives/negatives
• I am sure you have all heard about “false positives” 

and “false negatives”.
• But what does that actually mean?
•We want to perform an experiment and as part of 

that we define a null-hypothesis, e.g.  
•Now what can happen?

H0 : µ = 0
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False positives/negatives
• I am sure you have all heard about “false positives” 

and “false negatives”.
• But what does that actually mean?
•We want to perform an experiment and as part of 

that we define a null-hypothesis, e.g.  
•Now what can happen?

H0 : µ = 0

H0 is true
H0 is false } True state of affairs

We don’t reject H0

We reject H0 } Our decision



False positives/negatives
H0 is true
H0 is false } True state of affairs

We don’t reject H0

We reject H0 } Our decision

H0 is true

H0 is false

We don’t reject H0     We reject H0
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False negative



False positives/negatives
H0 is true
H0 is false } True state of affairs

We don’t reject H0

We reject H0 } Our decision

H0 is true

H0 is false

We don’t reject H0     We reject H0

☺
☺

False positive
Type I error

False negative
Type II error
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Multiple Comparisons

• In neuroimaging we typically perform many tests as 
part of a study

Different here? Maybe here? Or here?

…

…



What happens when we apply this to 
imaging data?

16 clusters
288 voxels
~5.5% of the voxels

z-map where each voxel ~N.
Null-hypothesis true everywhere, i.e. 

NO ACTIVATIONS

z

1.64

0.05

z-map 
thresholded at 

1.64

That’s a LOT of false positives



The strict approach:  
Bonferroni correction

5255 voxels

0.05/5255≈10-5

10-5

5.65
z-map 

thresholded at 
5.65

No false positives. 
Hurrah!

Bonferroni says threshold at α divided by # of tests



But ... doesn’t 5.65 sound very high?

10-5

5.65

Observed values 
in the z-map

Largest 
observed value

Bonferroni 
threshold

1.64

0.05

Too lenient Too harsh

So what do we want then?



Let’s say we perform a series of identical studies

Each z-map is the end 
result of a study

Let us further say that the null-hypothesis is true

We want to threshold the data so that only once in 20 
studies do we find a voxel above this threshold

But how do we find 
such a threshold?

Family-wise error



Outline
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max(z)=5.16

• When we want to control “family-wise error”, what do we 
in practice want?

• If the null-hypothesis is true (no activation) we want to 
reject it no more than 5% of the time.

• And if we reject anything, we will definitely reject the most 
“extreme” value (max(z)) in the brain.

Maximum z



max(z)=6.84

• When we want to control “family-wise error”, what do we 
in practice want?

• If the null-hypothesis is true (no activation) we want to 
reject it no more than 5% of the time.

• And if we reject anything, we will definitely reject the most 
“extreme” value in the brain.

Maximum z



Maximum z

max(z)=5.93

• When we want to control “family-wise error”, what do we 
in practice want?

• If the null-hypothesis is true (no activation) we want to 
reject it no more than 5% of the time.

• And if we reject anything, we will definitely reject the most 
“extreme” value in the brain.



Maximum z

max(z)=4.62

• When we want to control “family-wise error”, what do we 
in practice want?

• If the null-hypothesis is true (no activation) we want to 
reject it no more than 5% of the time.

• And if we reject anything, we will definitely reject the most 
“extreme” value in the brain.



Maximum z

max(z)=7.36

• When we want to control “family-wise error”, what do we 
in practice want?

• If the null-hypothesis is true (no activation) we want to 
reject it no more than 5% of the time.

• And if we reject anything, we will definitely reject the most 
“extreme” value in the brain.



Maximum z

Etc…

• When we want to control “family-wise error”, what do we 
in practice want?

• If the null-hypothesis is true (no activation) we want to 
reject it no more than 5% of the time.

• And if we reject anything, we will definitely reject the most 
“extreme” value in the brain.



Maximum z

This is the distribution we 
want to use for our FWE 

control. 

• When we want to control “family-wise error”, what do we 
in practice want?

• If the null-hypothesis is true (no activation) we want to 
reject it no more than 5% of the time.

• And if we reject anything, we will definitely reject the most 
“extreme” value in the brain.



Maximum z

This is the distribution we 
want to use for our FWE 

control. 
But there is no known 
expression for it! !

• When we want to control “family-wise error”, what do we 
in practice want?

• If the null-hypothesis is true (no activation) we want to 
reject it no more than 5% of the time.

• And if we reject anything, we will definitely reject the most 
“extreme” value in the brain.
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Spatial extent: another way to be 
surprised

This far we have talked about voxel-based tests

We say: Look! A z-value of 7. That is 
so surprising (under the null-
hypothesis) that I will have to reject it. 
(Though we are of course secretly 
delighted to do so)



Spatial extent: another way to be 
surprised

But sometimes our data just aren’t that surprising.

Nothing surprising here! The largest 
z-value is ~4. We cannot reject the 
null-hypothesis, and we are 
devastated.



Spatial extent: another way to be 
surprised

So we threshold the z-map at 2.3 (arbitrary threshold) and 
look at the spatial extent of clusters

We say: Look at that whopper! 301 
connected voxels all with z-values > 
2.3. That is really surprising (under the 
null-hypothesis). I will have to reject it. 



As with the z-values we need a 
“null-distribution”. What would that 

look like in this case?

Let’s say we 
have acquired 

some data

Distribution of Max Cluster Size



Threshold the  
z-map at 2.3 

(arbitrary)

Distribution of Max Cluster Size
If we reject any cluster we will 

reject the largest. So what we want 
is the distribution of the largest 

cluster, under the  
null-hypothesis.



Distribution of Max Cluster Size

Locate the 
largest cluster 

anywhere  in the 
brain.

78

If we reject any cluster we will 
reject the largest. So what we want 

is the distribution of the largest 
cluster, under the  
null-hypothesis.



Distribution of Max Cluster Size
If we reject any cluster we will 

reject the largest. So what we want 
is the distribution of the largest 

cluster, under the  
null-hypothesis.

And record how 
large it is.

78



Distribution of Max Cluster Size

And do the same 
for another 

experiment...

65

If we reject any cluster we will 
reject the largest. So what we want 

is the distribution of the largest 
cluster, under the  
null-hypothesis.



Distribution of Max Cluster Size

Etc ...

70

If we reject any cluster we will 
reject the largest. So what we want 

is the distribution of the largest 
cluster, under the  
null-hypothesis.



Distribution of Max Cluster Size

Until we have ...

If we reject any cluster we will 
reject the largest. So what we want 

is the distribution of the largest 
cluster, under the  
null-hypothesis.



Distribution of Max Cluster Size
If we reject any cluster we will 

reject the largest. So what we want 
is the distribution of the largest 

cluster, under the  
null-hypothesis.

And this (76) is the level 
we want to threshold at 

If we find a cluster larger 
than 76 voxels we reject 

the null-hypothesis.



Distribution of Max Cluster Size
So, just as was the case for the t-
values, we now have a distribution 

f that allows us to calculate a 
Family Wise threshold u pertaining 

to cluster size. But what does 
f and u 

crucially 
depend on?f
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Distribution of Max Cluster Size
So, just as was the case for the z-
values, we now have a distribution 

f that allows us to calculate a 
Family Wise threshold u pertaining 

to cluster size.

f depends crucially on 
the initial “cluster-

forming” threshold?

z = 2.3
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Distribution of Max Cluster Size
So, just as was the case for the z-
values, we now have a distribution 

f that allows us to calculate a 
Family Wise threshold u pertaining 

to cluster size.

f depends crucially on 
the initial “cluster-

forming” threshold?

z = 3.1

u = 25



Distribution of Max Cluster Size
Hence the distribution for the cluster size should 

really be written f(z) and the same for u(z)

u = 25

u = 49

u = 76

z = 3.1

z = 2.7

z = 2.3

But as before we don’t have an 
expression for these 

distributions.



Outline

• Null-hypothesis and Null-distribution

• Multiple comparisons and Family-wise error

• Different ways of being surprised

• Voxel-wise inference (Maximum z)

• Cluster-wise inference (Maximum size)

• Parametric vs non-parametric tests

• Enhanced clusters

• FDR - False Discovery Rate



Parametric vs non-parametric
• As we described earlier, one of the 

great things about for example the 
t-test is that we know the null-
distribution 

• But most distributions are not that 
simple 
 

• And errors are not always normal-
distributed

Provided that e ~ N(0,σ2)



Example: VBM-style analysis
• Our data is segmented grey matter maps

• A voxel is either grey matter, or not.

Group #1
(FSL Course Tutors)

Group #2
(FSL Course Attendees)

Ok!

hist(e) ~ N ?
!

�
�1

�2

⇥

�
�1

�2

⇥
=

�
0.4
0.6

⇥

=



Parametric vs non-parametric

• There are approximations to the 
Max-z and Max-size statistics 
 

• These are valid under certain sets 
of assumptions 
 

• But can be a problem when applied 
outside of that set of assumptions

Cluster failure: Why fMRI inferences for spatial extent
have inflated false-positive rates
Anders Eklunda,b,c,1, Thomas E. Nicholsd,e, and Hans Knutssona,c
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The most widely used task functional magnetic resonance imaging
(fMRI) analyses use parametric statistical methods that depend on a
variety of assumptions. In this work, we use real resting-state data
and a total of 3 million random task group analyses to compute
empirical familywise error rates for the fMRI software packages SPM,
FSL, and AFNI, as well as a nonparametric permutation method. For a
nominal familywise error rate of 5%, the parametric statistical
methods are shown to be conservative for voxelwise inference
and invalid for clusterwise inference. Our results suggest that the
principal cause of the invalid cluster inferences is spatial autocorre-
lation functions that do not follow the assumed Gaussian shape. By
comparison, the nonparametric permutation test is found to produce
nominal results for voxelwise as well as clusterwise inference. These
findings speak to the need of validating the statistical methods being
used in the field of neuroimaging.

fMRI | statistics | false positives | cluster inference | permutation test

Since its beginning more than 20 years ago, functional magnetic
resonance imaging (fMRI) (1, 2) has become a popular tool

for understanding the human brain, with some 40,000 published
papers according to PubMed. Despite the popularity of fMRI as a
tool for studying brain function, the statistical methods used have
rarely been validated using real data. Validations have instead
mainly been performed using simulated data (3), but it is obviously
very hard to simulate the complex spatiotemporal noise that arises
from a living human subject in an MR scanner.
Through the introduction of international data-sharing initia-

tives in the neuroimaging field (4–10), it has become possible to
evaluate the statistical methods using real data. Scarpazza et al.
(11), for example, used freely available anatomical images from
396 healthy controls (4) to investigate the validity of parametric
statistical methods for voxel-based morphometry (VBM) (12).
Silver et al. (13) instead used image and genotype data from 181
subjects in the Alzheimer’s Disease Neuroimaging Initiative
(8, 9), to evaluate statistical methods common in imaging ge-
netics. Another example of the use of open data is our previous
work (14), where a total of 1,484 resting-state fMRI datasets from
the 1,000 Functional Connectomes Project (4) were used as null
data for task-based, single-subject fMRI analyses with the SPM
software. That work found a high degree of false positives, up to
70% compared with the expected 5%, likely due to a simplistic
temporal autocorrelation model in SPM. It was, however, not
clear whether these problems would propagate to group studies.
Another unanswered question was the statistical validity of other
fMRI software packages. We address these limitations in the
current work with an evaluation of group inference with the three
most common fMRI software packages [SPM (15, 16), FSL (17),
and AFNI (18)]. Specifically, we evaluate the packages in their
entirety, submitting the null data to the recommended suite of
preprocessing steps integrated into each package.
The main idea of this study is the same as in our previous one

(14). We analyze resting-state fMRI data with a putative task
design, generating results that should control the familywise error

(FWE), the chance of one or more false positives, and empirically
measure the FWE as the proportion of analyses that give rise to
any significant results. Here, we consider both two-sample and
one-sample designs. Because two groups of subjects are randomly
drawn from a large group of healthy controls, the null hypothesis
of no group difference in brain activation should be true. More-
over, because the resting-state fMRI data should contain no
consistent shifts in blood oxygen level-dependent (BOLD) activity,
for a single group of subjects the null hypothesis of mean zero
activation should also be true. We evaluate FWE control for both
voxelwise inference, where significance is individually assessed at
each voxel, and clusterwise inference (19–21), where significance
is assessed on clusters formed with an arbitrary threshold.
In brief, we find that all three packages have conservative

voxelwise inference and invalid clusterwise inference, for both
one- and two-sample t tests. Alarmingly, the parametric methods
can give a very high degree of false positives (up to 70%, com-
pared with the nominal 5%) for clusterwise inference. By com-
parison, the nonparametric permutation test (22–25) is found to
produce nominal results for both voxelwise and clusterwise in-
ference for two-sample t tests, and nearly nominal results for one-
sample t tests. We explore why the methods fail to appropriately
control the false-positive risk.

Results
A total of 2,880,000 random group analyses were performed to
compute the empirical false-positive rates of SPM, FSL, and
AFNI; these comprise 1,000 one-sided random analyses repeated
for 192 parameter combinations, three thresholding approaches,

Significance

Functional MRI (fMRI) is 25 years old, yet surprisingly its most
common statistical methods have not been validated using real
data. Here, we used resting-state fMRI data from 499 healthy
controls to conduct 3 million task group analyses. Using this null
data with different experimental designs, we estimate the in-
cidence of significant results. In theory, we should find 5% false
positives (for a significance threshold of 5%), but insteadwe found
that the most common software packages for fMRI analysis (SPM,
FSL, AFNI) can result in false-positive rates of up to 70%. These
results question the validity of a number of fMRI studies and may
have a large impact on the interpretation of weakly significant
neuroimaging results.
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Parametric vs non-parametric
• Those approximations were based 

on Gaussian Random Field Theory, 
and was an impressive body of work 
 

• They served us fantastically well at a 
time when we had little choice 
 

• But the we’ve moved towards non-
parametric testing



Parametric vs non-parametric



• We can permute the data itself to create a distribution 
that we can use to test our statistic.

+ Makes very few assumptions about the data

+ Works for any test statistic

A simple permutation test

We have performed an 
experiment

And calculated a statistic, 
e.g. a t-value 

t = 2.27
If the null-hypothesis is true, there is no 

difference between the groups. That 
means we should be able to “re-label” 
the individual points without changing 

anything.



One re-labelling t-value after re-labelling 

t = 0.67

Let’s start collecting them

Original 
labelling

A simple permutation test
• We can permute the data itself to create a distribution 

that we can use to test our statistic.

+ Makes very few assumptions about the data

+ Works for any test statistic



Second re-labelling t-value after re-labelling 

t = 1.97
Original 
labelling

And another one

A simple permutation test
• We can permute the data itself to create a distribution 

that we can use to test our statistic.

+ Makes very few assumptions about the data

+ Works for any test statistic



Of the 5000 re-labellings, only 90 had a t-
value > 2.27 (the original labelling).

I.e. there is only a ~1.8% (90/5000) chance 
of obtaining a value > 2.27 if there is no 

difference between the groups

i.e. p(x   2.27) = 1.79% for t18
5000 re-labellings. Phew!

�

Original 
labelling

A simple permutation test
• We can permute the data itself to create a distribution 

that we can use to test our statistic.

+ Makes very few assumptions about the data

+ Works for any test statistic



And we can use this for any statistic

We compared activation 
by painful stimuli in two 
groups of 5 subjects 
each.

This is what we got
Very intriguing 
activation. t8 = 4.65

Prof. ran to write to 
Nature Neuro. But, did 
they jump the gun?



Group 1

Group 2

2nd level
 model

Our group 
difference map

max(t)=4.65

We compared activation 
by painful stimuli in two 
groups of 5 subjects 
each.

This is what we got
Very intriguing 
activation. t8 = 4.65

Prof. ran to write to 
Nature Neuro. But, did 
they jump the gun?

And we can use this for any statistic



Permuted
 model

Permuted group 
difference map

max(t)=8.23

We compared activation 
by painful stimuli in two 
groups of 5 subjects 
each.

This is what we got
Very intriguing 
activation. t8 = 4.65

Prof. ran to write to 
Nature Neuro. But, did 
they jump the gun?

Group 1

Group 2

And we can use this for any statistic



2nd 
Permutation

2nd permuted 
map

max(t)=5.43

We compared activation 
by painful stimuli in two 
groups of 5 subjects 
each.

This is what we got
Very intriguing 
activation. t8 = 4.65

Prof. ran to write to 
Nature Neuro. But, did 
they jump the gun?

Group 1

Group 2

And we can use this for any statistic



3rd 
Permutation

3rd permuted 
map

max(t)=5.84

We compared activation 
by painful stimuli in two 
groups of 5 subjects 
each.

This is what we got
Very intriguing 
activation. t8 = 4.65

Prof. ran to write to 
Nature Neuro. But, did 
they jump the gun?

Group 1

Group 2

And we can use this for any statistic



5000 permutations

3925 permutations 
yielded higher 

max(t)-value than 
original labelling.
We cannot reject 

the null-hypothesis.

Original 
labelling

We compared activation 
by painful stimuli in two 
groups of 5 subjects 
each.

This is what we got
Very intriguing 
activation. t8 = 4.65

Prof. ran to write to 
Nature Neuro. But, did 
they jump the gun?

Group 1

Group 2

And we can use this for any statistic



But beware the “exchangeability”

• When we swap the labels of two data-points we need to 
make sure that they are “exchangeable”

• “Exchangeable” means that the covariance matrix of the 
noise/error after model fitting isn’t changed by a 
permutation (will show examples of this)



• You may, or may not, have seen this slide in the 1st level 
GLM talk.

1st level fMRI data is not exchangeable

= X �

�
�1

�2

�

+
Gaussian noise 

(temporal autocorrelation)Design MatrixData from  
a voxel

Regressor, 
Explanatory Variable (EV)

Regression parameters, 
Effect sizes

y

=

e

+

x1 x2
This time we will 
look more closely 

at this part

e ⇠ N(0,⌃)
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This is the 
(potentially) 
problematic 

covariance matrix



• One important component of noise in fMRI consists of 
physiological/neuronal events convolved by the HRF

1st level fMRI data is not exchangeable



• One important component of noise in fMRI consists of 
physiological/neuronal events convolved by the HRF

1st level fMRI data is not exchangeable

…

…

If we sample this every 20 seconds it no longer looks “smooth”



• One important component of noise in fMRI consists of 
physiological/neuronal events convolved by the HRF

1st level fMRI data is not exchangeable

Variance 
at point 1

Variance 
at point 2

Covariance 
between points 

1 and 2

e ⇠ N(0,�2I)
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• One important component of noise in fMRI consists of 
physiological/neuronal events convolved by the HRF

1st level fMRI data is not exchangeable

…

But that is not a realistic TR. What about every 3 seconds?



• One important component of noise in fMRI consists of 
physiological/neuronal events convolved by the HRF

1st level fMRI data is not exchangeable

Variance 
at point 1

Variance 
at point 2

Covariance 
between points 

1 and 2



• Let us now return to our model again

1st level fMRI data is not exchangeable

= X �

�
�1

�2

�

+
Gaussian noise 

(temporal autocorrelation)Design MatrixData from  
a voxel

Regressor, 
Explanatory Variable (EV)

Regression parameters, 
Effect sizes

y

=

e

+

x1 x2

• The model consists 
of our regressors X 
and the noise model

• All permutations 
must result in 
“equivalent models”

• Let us now see what 
happens if we swap 
two data-points 
(points 5 and 10)



• One important component of noise in fMRI consists of 
physiological/neuronal events convolved by the HRF

1st level fMRI data is not exchangeable

“Point” 10 now 
covaries with 
points 4 and 6

“Point 5” now 
covaries with 

points 9 and 11

And the models 
are no longer 

equivalent



• One important component of noise in fMRI consists of 
physiological/neuronal events convolved by the HRF

1st level fMRI data is not exchangeable

And the models 
are no longer 

equivalent

And for a random 
permutation …



• Data-points are not “exchangeable” if swapping them 
means that the noise covariance-matrix ends up looking 
different.

• Formally “The joint distribution of the data must be 
unchanged by the permutations under the null-
hypothesis”.

• If the noise covariance-matrix has non-zero off-diagonal 
elements (covariances) you need to beware.

• You typically never estimate or see the covariance-
matrix. You need to “imagine it” and determine from that 
if there is a problem.

Back to exchangeability



Examples of exchangeability: 
Two groups unpaired

This is the “exchangeability 
group”. Here all scans are 
in the same group, which 
means any scan can be 

exchanged for any other.

N.B. The “group” labelling 
is used for completely 

different purposes when 
using FLAME/GRFT



The implicit assumption 
here is that data from all 
subjects have the same 
uncertainty and are all 

independent 

Assumed covariance matrix

Examples of exchangeability: 
Two groups unpaired



1
2
3
4
5
6
7
8
9
10

Original

6
3
7
8
5
1
2
4
9
10

Perm 1

6
1
7
4
9
5
8
3
10
2

Perm 2 …

Examples of exchangeability: 
Two groups unpaired



Examples of exchangeability:
Single group average

Here we model a single 
mean and want to know if 
that is different from zero

But there isn’t really 
anything to permute, or 

is there?



Examples of exchangeability:
Single group average

+
+
+
+
+
+
+
+
+
+

Original

t = �0.17
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Examples of exchangeability:
Single group average

+
-
+
-
-
+
+
-
+
+

First flip
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Examples of exchangeability:
Single group average
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Etc …

…



Examples of exchangeability:
Single group average

• Symmetric errors

• Errors independent

• Subjects drawn from a single population

And the assumptions are:



Examples of exchangeability:
Two groups paired

Here we can only 
exchange scans within 

each subject. I.e. Input 1 
for Input 2, Input 3 for 

Input 4 etc



Assumed covariance matrix

The implicit assumption here 
is that data from all subjects 
have the same uncertainty 

and that there is no 
dependence between subjects 

Allowed swap
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Assumed covariance matrix

The implicit assumption here 
is that data from all subjects 
have the same uncertainty 

and that there is no 
dependence between subjects 

Disallowed swap

Examples of exchangeability:
Two groups paired
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Perm 2 …

Examples of exchangeability:
Two groups paired



Outline

• Null-hypothesis and Null-distribution

• Multiple comparisons and Family-wise error

• Different ways of being surprised

• Voxel-wise inference (Maximum z)

• Cluster-wise inference (Maximum size)

• Parametric vs non-parametric tests

• Enhanced clusters

• FDR - False Discovery Rate
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Threshold at 
(arbitrary!) z level

z stat image



Clustering cookbook
Instead of resel-based correction, we can do clustering:

Threshold at 
(arbitrary!) z level

z stat image

Form clusters from surviving voxels.
Calculate the size threshold u(R,z).
Any cluster larger than u “survives” and we reject 
the null-hypothesis for that.
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This is arbitrary and a trade-off
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How do we choose the  
(arbitrary!) z-threshold?

This is arbitrary and a trade-off

•   Tends to be more sensitive than voxel-wise corrected testing

•   Results depend on extent of spatial smoothing in pre-processing  

z-threshold

z-threshold2.  High threshold - gives more power to 
clusters with small spatial extent and high z

1.  Low threshold - can violate RFT 
assumptions, but can detect clusters with large 
spatial extent and low z



TFCE 
Threshold-Free Cluster Enhancement 

                     [Smith & Nichols, NeuroImage 2009]

• Cluster thresholding:
• popular because it’s sensitive, due to its use of spatial extent
• but the pre-smoothing extent is arbitrary
• and so is the cluster-forming threshold
➡  unstable and arbitrary

• TFCE
• integrates cluster “scores”

over all possible thresholds
• output at each voxel is measure

of local cluster-like support
• similar sensitivity to optimal

cluster-thresholding, but stable
and non-arbitrary

h

e

p

The TFCE value at point p is given by the sum,
over the shaded area, of the score from each

contributing incremental section:   

TFCE(p) = Σ  e(h)E . hH
h



Qualitative example 

 

 
original
signal

TFCE
enhancement



TFCE  for  FSL-VBM 

0.05

0.003

TFCE

cluster-based (red)
voxel-based (blue)

p (corrected)Z=22 Z=48 Y=-16

R



TFCE for TBSS
controls > schizophrenics

p<0.05 corrected for multiple comparisons across space, using 
randomise

cluster-based: 
cluster-forming 
threshold = 
2 or 3

TFCE



Outline

• Null-hypothesis and Null-distribution

• Multiple comparisons and Family-wise error

• Different ways of being surprised

• Voxel-wise inference (Maximum z)

• Cluster-wise inference (Maximum size)

• Parametric vs non-parametric tests

• Enhanced clusters

• FDR - False Discovery Rate



• FDR: False Discovery Rate 
A “new” way to look at inference.

• Uncorrected (for multiple-comparisons):
• Is equivalent to saying: “I am happy to nearly always say 

something silly about my experiments”.
• On average, 5% of all voxels are false positives

• Family-Wise Error (FWE):
• Is equivalent to saying: “I am happy to say something silly 

about 5% of my experiments”.
• On average, 5% of all experiments have one or more 

false positive voxels

• False Discovery Rate
• Is equivalent to saying: “I am happy if 5% of what I say about 

each experiment is silly”.
• On average, 5% of significant voxels are false positives

INFERENCEFalse Discovery Rate



Little imaging demonstration.

Signal+Noise

Noise

Signal



FWE

control of FamilyWise Error rate at 10%

uncorrected voxelwise control of FP rate at 10%

percentage of all null pixels that are False Positives

control of False Discovery Rate at 10%

occurrence of FamilyWise Error

percentage of activated (reported) pixels that are False Positives



FDR for dummies

• Makes assumptions about how errors are 
distributed (like GRT).

• Used to calculate a threshold.

• Threshold such that X% of super-threshold 
(reported) voxels are false positives.

• Threshold depends on the data. May for example 
be very different for [1 0] and [0 1] in the same 
study.


