

FMRI single subject analysis

- Overview
- Setting up a GLM model
- Contrasts and statistics

~ MM Mapaman MM

Predicted response

Model

Fit model to data

Look for voxels that have a BOLD timeseries similar to the model

Example Experiment

Silent word generation

Silent word generation

Noun is presented

Jellyfish

Screen

Verb is generated

Silent word generation

Noun is presented

Burger

Screen

Control: silent word shadow

Verb is presented

Swim

Screen

Control: silent word shadow

Verb is presented

Screen

Baseline: crosshair

Crosshair is shown

The full experiment

- Three types of events
 - 1st type: Word Generation
 - 2nd type: Word Shadowing
 - 3rd type: Null event
- 6 sec ISI, random order
- 24 events of each type

How to analyze the data?

- Set up regressors 1.
 - What do we know the brain should be doing during the experiment?
 - = Explanatory variables, Design Matrix, Model
- 2. Fit the regressors to the data

Combine the regressors in a way that is most similar to the observed data = Parameter Estimates (PE), Betas, Effect Sizes

3. Set up contrasts to compare conditions

Compare conditions by doing simple arithmetic

= Contrast of Parameter Estimates (COPE)

4. Perform statistical inference

Often t-test to see if COPE is bigger than zero

Defining regressors

Predicted response to word generation

445 seconds

MIR Mallinckrodt Institute

Voxel-wise analysis

Looking for voxels interested in during word generation

mm mm mm mm mm

MMMMMM prediction 445 seconds

Subsampling to TR Event timings at "high" resolution

Convolve with HRF

Predictions at "high" resolution

Sub-sample at T_R of experiment

Regressor

What about baseline?

- Set up separate regressors for each condition of interest
- Word generation
- Word shadowing
- The mean BOLD value is uninteresting in an FMRI session
- There are two equivalent options:
 - regressor for the baseline is not included)
 - 2. Model the mean (FSL group & SPM 1st level + group)

1. Remove the mean from the data and don't model it (FSL 1st level; i.e. a

Your new friend: the GLM

Word Generation

Observed data

Word Shadowing

> Predicted responses = EVs = regressors

Parameter Estimates

β \approx

Observed data

Word Generation

Shadowing β₂ •

Word

Predicted responses = EVs = regressors

The estimation entails finding the parameter values such that the linear combination "best" fits the data

Let's try these parameter values

Word Word Shadowing Generation 0.5

Hmm, not a great fit

Word Generation

Shadowing β₂ • 0.5

Word

 \approx

R

Word Generation

 B_2

Word Shadowing

But that looks good

 \approx 1.04

Word Generation

Word Shadowing $+\beta_2$ -0.10

Estimate PEs separately for each voxel

β₁ · ~ 1.10

A WA P A

+ β₂ - 1.02

Estimate PEs separately for each voxel

 $\approx \beta_{\rm I} \cdot \frac{1}{2}$ -0.04

+ β_2 - 0.03

Residuals

mannamm

Residual errors

Difference between data and best fit: "Residual error"

Used to calculate t-statistic

Regressor, Explanatory Variable (EV)

Data from

a voxel

Design Matrix

The GLM framework

Gaussian noise (temporal autocorrelation)

Choosing the high pass filter

Cut-off=100s

Cut-off=250s

Contrasts

- Which areas of the brain are significantly activated during word generation
 - compared to baseline?
- Which areas of the brain are significantly more activated during word generation
 - compared to word shadowing?

Possible contrasts

- [1 0] : EV1 vs baseline
- [0 1] : EV2 vs baseline
- •[11]: Mean of EV1 and EV2
- [-1 1]: More activated in EV2 than EV1
- [1 -1]: More activated in EV1 than EV2

COPEs = simple arithmetic

 $\beta_1 = 1.04$ $\beta_2 = -0.10$

Use t-test to determine if COPE is significantly greater than zero

- [1 0] : 1 x 1.04 + 0 x -0.10 = 1.04
- [0 1] : 0 x 1.04 + 1 x -0.10 = -0.10
- [1 1] : 1 x 1.04 + 1 x -0.10 = 0.94
- $[-1 1]: -1 \times 1.04 + 1 \times -0.10 = -1.14$
- [1 1]: 1 x 1.04 + -1 x -0.10 = 1.14

COPE images

β2

- [1 0] : 1 x 1.04 + 0 x -0.10 = 1.04
- [0 1] : 0 x 1.04 + 1 x -0.10 = -0.10
- [1 1] : 1 x 1.04 + 1 x -0.10 = 0.94
- $[-1 1]: -1 \times 1.04 + 1 \times -0.10 = -1.14$

• [1 - 1]: 1 x 1.04 + -1 x -0.10 = 1.14

M MM MM MM M Z The Model

t-statistic

$t = \frac{COPE}{std(COPE)}$

Ρ

Z - distribution z' Ζ

F-contrasts

- Allows you to ask if any condition is significant
 - Is there activation to any condition?
 - Does any regressor explain variance in the data?
- F-contrasts are not directional
- F-statistic compares full model to reduced model

Washington University in St. Louis School of Medicine

Temporal autocorrelation

Uncorrected, this causes:

- biased stats (increased false positives)
- decreased sensitivity

FSL fixes it for you in FEAT!

Cannot use randomise (see later) because of autocorrelation

Multiple comparisons

z-map where each voxel ~N. Null-hypothesis true everywhere, i.e. NO ACTIVATIONS

16 clusters288 voxels~5.5% of the voxels

That's a LOT of false positives

This afternoon: inference

Which areas of the brain are significantly activated during word generation

/stats/pe2

compared to baseline?

Which areas of the brain are significantly more activated during word generation

compared to word shadowing?

The free online appendix

- Part of a series of Oxford Neuroimaging Primers
- <u>https://www.fmrib.ox.ac.uk/primers/appendices/</u> <u>glm.pdf</u>
- Work on a full primer book on the GLM is in progress!

OXFORD NEUROIMAGING PRIMERS

Short introduction to the **General Linear Model** for Neuroimaging

Mark Jenkinson Janine Bijsterbosch Michael Chappell Anderson Winkler

Series editors: Mark Jenkinson and Michael Chappe

> PRIMER APPENDIX

Washingtor Washingtor Jniversity in St.Lou SCHOOL OF MEDICIN

MIR Mallinckrodt Ins

That's all folks

