

Resting-State fMRI: ICA and Dual Regression

19 June, Osaka, Japan

Resting state fMRI and ICA

- Introduction to resting state
- Independent Component Analysis
- Single-subject ICA
- Multi-subject ICA
- Dual regression

Why resting state fMRI?

Energy consumption in the brain

- Brain < 2% body weight but consumes ~20% of total energy
- Estimated 60-80% of this energy used to support communication between cells

Oxygen consumption

- fMRI provides a window to brain activity
- Task-evoked activity accounts for ~1%

Finn 2021

Resting state -> intrinsic functional brain organisation

Why study the brain at rest?

- Understand the inherent functional organisation of the brain
- Clinical/ cognitive biomarker
- Pragmatic benefits: can be done in any population, with relatively little setup and expertise required

Sheline et al (2010)

Overview of Resting State Analysis

Principles of resting state analysis

- Many different methods available for analysis
- All have one assumption in common:
 - The definition of functional connectivity is based on a statistical dependency between timeseries
- Differences between methods lie in the way these similarities are estimated and/or represented

If two brain regions show similarities in their BOLD timeseries, they are functionally connected

Types of connectivity

- Functional connectivity
 - Statistical dependency
- Dynamic connectivity
 - Changes in functional connectivity over time
- Effective connectivity
 - Directional influence
- Anatomical (structural) connectivity
 - Presence of a white matter tract

man warpen of the when any the water of the

Two broad categories of resting state methods

Voxel-based methods

Node-based methods

Overview of resting state methods

Voxel-based methods

- Seed-based correlation analysis
 - SCA
- Independent component analysis
 - ICA
- Amplitude of low frequency fluctuations
- Regional homogeneity

Node-based methods

- Network modelling analysis
 - FSLNets
- Graph theory analysis
 - Such as degree, hub, path length
- Dynamic causal modelling
- Non-stationary methods

Overview of resting state methods

Voxel-based methods

- Seed-based correlation analysis
 - SCA
- Independent component analysis
 - ICA -> this afternoon
- Amplitude of low frequency fluctuations
- Regional homogeneity

Node-based methods

- Network modelling analysis
 - FSLNets -> tomorrow morning
- Graph theory analysis
 - Such as degree, hub, path length
- Dynamic causal modelling
- Non-stationary methods

Resting state fMRI and ICA

- Introduction to resting state
- Independent Component Analysis
- Single-subject ICA
- Multi-subject ICA
- Dual regression

Resting state functional components

- Each component -> a set of brain regions that work in synchrony
- Timecourses can then be used for network modelling

MELODIC: ICA tool in FSL

multivariate linear decomposition:

multivariate linear decomposition:

multivariate linear decomposition:

multivariate linear decomposition:

Data is represented as a 2D matrix and decomposed into components

What are components?

X

X

- ×

- express observed data as linear combination of spatio-temporal processes.
- Components can be liberally recombined to reconstruct the original data.

Some characteristics of MELODIC

- Multivariate voxel-based approach
- Exploratory "model-free" method to find interesting structure in the data
- Gives "spatially independent" components
- "Avoiding overfitting" through automatic model order selection
- "Thresholding" to remove background from main signal

Some characteristics of MELODIC

- Multivariate voxel-based approach
- Exploratory "model-free" method to find interesting structure in the data
- Gives "spatially independent" components
- "Avoiding overfitting" through automatic model order selection
- "Thresholding" to remove background from main signal

ICA vs GLM: Exploratory vs Confirmatory

multivariate linear decomposition:

Data is represented as a 2D matrix and decomposed into components

multivariate linear decomposition:

Data is represented as a 2D matrix and decomposed into components

Model-based (GLM) analysis

- Model each measured time-series as a linear combination of signal and noise
- We know the expected response -> use that to define the design matrix

Resting state = Model-free?

Resting state timeseries are unconstrained -> no design matrix

Task: Confirmatory vs Rest: Exploratory

Confirmatory

 "How well does my model fit to the data?"

Model
Analysis

- results depend on the model

Exploratory

"Is there anything interesting in the data?"

Analysis 🔶 Model

can give unexpected results

Some characteristics of MELODIC

- Multivariate voxel-based approach
- Exploratory "model-free" method to find interesting structure in the data
- Gives "spatially independent" components
- "Avoiding overfitting" through automatic model order selection
- "Thresholding" to remove background from main signal

Spatially independent components

Spatial ICA for FMRI

data is decomposed into a set of spatially
 independent maps and a set of time-courses

McKeown et al. HBM 1998

PCA vs. ICA ?

(2 components, slightly different timecourses)

PCA vs. ICA ?

PCA vs. ICA ?

PCA vs. ICA

 PCA finds projections of maximum amount of variance in Gaussian data (uses 2nd order statistics only)

PCA vs. ICA

- PCA finds projections of maximum amount of variance in Gaussian data (uses 2nd order statistics only)
- Independent Component Analysis (ICA) finds projections of maximal independence in non-Gaussian data (using higherorder statistics)

Non-Gaussianity

sources

mixtures

Non-Gaussianity

Gaussian

ICA estimation

- Random mixing results in more Gaussianshaped PDFs (Central Limit Theorem)
- ICA turns this around:

if we estimate components with less Gaussian distributions this is unlikely to be a random result

 can use neg-entropy as a measure of non-Gaussianity

ICA estimation

- Need to find an unmixing matrix such that: a) maximises independence between components and b) maximises non-Gaussianity of components
- For (a) need a contrast (objective/cost) function to drive the unmixing which measures statistical independence and for (b) need an optimisation technique:
 - gradient descent & kurtosis or cumulants (Jade)
 - gradient descent & maximum entropy (Infomax)
 - fixed point iteration & neg-entropy (FastICA)

Some characteristics of MELODIC

- Multivariate voxel-based approach
- Exploratory "model-free" method to find interesting structure in the data
- Gives "spatially independent" components
- "Avoiding overfitting" through automatic model order selection
- "Thresholding" to remove background from main signal

Managing overfitting: Automatic model order selection

The 'overfitting' problem

Fitting a noise-free model to noisy observations:

- No control over signal vs. noise (non-interpretable results)
- Statistical significance testing not possible

GLM analysis

standard ICA (unconstrained)

Probabilistic ICA model in MELODIC

statistical "latent variables" model: we observe linear mixtures of hidden sources in the presence of Gaussian noise

Issues:

- Model Order Selection: how many components?

Model Order Selection 'How many components'?

under-fitting: the amount of explained data variance is insufficient to obtain good estimates of the signals

over-fitting: the inclusion of too many components leads to fragmentation of signal across multiple component maps, reducing the ability to identify the signals of interest

optimal fitting: the amount of explained data variance is sufficient to obtain good estimates of the signals while preventing further splits into spurious components

Model Order Selection

- observed Eigenspectrum of the data covariance matrix
- Laplace approximation of the posterior probability of the model order
- theoretical Eigenspectrum from Gaussian noise

Some characteristics of MELODIC

- Multivariate voxel-based approach
- Exploratory "model-free" method to find interesting structure in the data
- Gives "spatially independent" components
- "Avoiding overfitting" through automatic model order selection
- "Thresholding" to remove background from main signal

Thresholding

Thresholding

Thresholding

- classical null-hypothesis testing is invalid
- data is assumed to be a linear combination of signals and noise
- the distribution of the estimated spatial maps is a mixture distribution!

Alternative Hypothesis Test

 use Gaussian/Gamma mixture model fitted to the histogram of intensity values (using EM)

Summary of part 1

- Resting state allows us to study the intrinsic organisation of the brain
- It focuses on connectivity and estimates functional components (resting state networks, RSN)
- Each RSN is characterised with a spatial map and a time course
- ICA can be used to characterise these RSNs
- MELODIC is FSL's ICA tool
 - Model-free, spatial independence, non-Gaussianity, model order selection, thresholding via mixture modelling

Resting-State fMRI: ICA and Dual Regression

Rezvan Farahibozorg

FSL Course 2024

19 June, Osaka, Japan

Resting state fMRI and ICA

- Introduction to resting state
- Independent Component Analysis
- Single-subject ICA
- Multi-subject ICA
- Dual regression

The goal of single subject ICA is artefact detection

FMRI inferential path

Interpretation of final results

MR Physics

Image from <u>mos.ru</u>, released under the CC BY 4.0 license

Variability in FMRI

Experiment

Interpretation of final results

suboptimal event timing, inefficient design, etc.

Physiology

secondary activation, illdefined baseline, restingfluctuations etc.

MR Physics

MR noise,

field inhomogeneity,

MR artefacts etc.

Analysis

filtering & sampling artefacts, design misspecification, stats & thresholding issues etc.

Artefact detection

- Resting state FMRI data contain a variety of source processes
- Some of these sources are interesting signals and others are artefacts such as motion, cardiac pulsation, respiration
- Artifactual sources typically have unknown spatial and temporal extent and cannot easily be modelled accurately
- Good news: they are spatiotemporally distinct from true signals in the brain
- Therefore, ICA which is an exploratory tool which requires minimal knowledge of spatiotemporal characteristics of components can be used to identify artefacts, a.k.a, **Structured noise**.
- This is done at **single-subject level.**

Manual labelling of ICA components as signal vs artefact

FSLeyes Melodic Mode

motion

cardiac

susceptibility motion

multiband

RSIL

effects of scan parameters

manual classification

Griffanti et al (2016). https://doi.org/10.1016/j.neuroimage.2016.12.036

Removing artefacts

ICA-based denoising

mulinner

In many how we want how we want

ICA-based denoising

ICA-based denoising

Semi-automatic artefact detection

component

label

semi-automatic classification

- FIX (https://fsl.fmrib.ox.ac.uk/fsl/docs/#/resting_state/fix)
 - Classifier with many features
 - Requires manually labelled training data
 - 99% accuracy on high-quality data
- The latest version is reimplemented in Python and installed as part of FSL, unlike previous MATLAB/R version that needed separate installation.

semi-automatic classification

- FIX (https://fsl.fmrib.ox.ac.uk/fsl/docs/#/resting_state/fix)
 - Classifier with many features
 - Requires manually labelled training data
 - 99% accuracy on high-quality data
- ICA-AROMA (github.com/rhr-pruim/ICA-AROMA)
 - Simple classifier with only 4 features
 - No training data required
 - Mainly designed for motion artefacts

Resting state fMRI and ICA

- Introduction to resting state
- Independent Component Analysis
- Single-subject ICA
- Multi-subject ICA
- Dual regression

The goal of multi subject ICA is to characterise Resting State Networks (RSNs)

Different ICA models

Different ICA models

Multi-Session or Multi-Subject ICA: Tensor-ICA approach

good when: each subject has SAME timeseries e.g. activation FMRI

Concatenated ICA

- Concatenate all subjects' data temporally
- Then run ICA
- More appropriate than tensor ICA (for RSNs)

Concatenated ICA

- Data sets must be registered to a common space (anatomical alignment)
- Memory optimisation trick (called MIGP)

Resting state multi-subject ICA

- Why not just run ICA on each subject separately?
 - Correspondence problem (eg RSNs across subjects)
 - Different splittings sometimes caused by small changes in the data (naughty ICA!)
- Instead start with a "group-average" ICA
 - But then need to relate group maps back to the individual subjects

Resting state networks

Dorsal Attention Network

Resting state fMRI and ICA

- Introduction to resting state
- Independent Component Analysis
- Single-subject ICA
- Multi-subject ICA
- Dual regression

BSIL

Resting state multi-subject ICA

Group ICA map

Example subject maps derived from dual regression

Dual Regression

- Two steps that both involve multiple regression:
- 1. Extract subject timeseries

2. Extract subject maps

Dual Regression

Dual Regression

Group ICA map

Example subject maps derived from dual regression

Running dual_regression

000	beckmann — bash — bash — 142×23					
[islay:~] dual_regression.sh						
dual_regression v0.5 (beta)						
NOTE ORDER OF COMMAND-LINE ARGUMENTS IS DIFFERENT FROM PREVIOUS VERSION						
Usage: dual_regression <group_ic_maps> <des_norm> <design.mat> <design.con> <n_perm> <output_directory> <input1> <input2> <input3> e.g. dual_regression groupICA.gica/groupmelodic.ica/melodic_IC 1 design.mat design.con 500 grot `cat groupICA.gica/.filelist`</input3></input2></input1></output_directory></n_perm></design.con></design.mat></des_norm></group_ic_maps>						
<proup_ic_maps_4d> <des_norm> <design.mat> <design.con> <n_perm> <output_directory> <input1> <input2></input2></input1></output_directory></n_perm></design.con></design.mat></des_norm></proup_ic_maps_4d>	4D image containing spatial IC maps (melodic_IC) from the whole-group ICA analysis 0 or 1 (1 is recommended). Whether to variance-normalise the timecourses used as the stage-2 regressors Design matrix for final cross-subject modelling with randomise Design contrasts for final cross-subject modelling with randomise Number of permutations for randomise; set to 1 for just raw tstat output, set to 0 to not run randomise at all. This directory will be created to hold all output and logfiles List all subjects' preprocessed, standard-space 4D datasets					
<design.mat> <design.con> -1 If you need to add other ran [islay:~]</design.con></design.mat>	can be replaced with just for group-mean (one-group t-test) modelling. domise option then just edit the line after "EDIT HERE" below					

- FSL command line tool, combining:
 - DR to create subject-wise estimates (stage 1 + stage 2)
 - Group comparison using randomise (stage 3)

Group comparison

 Collect maps and perform vox randomisation test on GLM)

- Can now do voxelwise testing for each original group ICA ma
- Can choose to look at strength-and-snape dilierences

Group analysis on maps

00	X	GLM Setup)					
Higher-level / non-timeseries design 😑								
# inputs 20 🚔								
Wizard	Save	Load	Exit	Help	1			

000	X Gene	eral Linear N	lodel			0	0 0 🛛 🕅	lodel		
Vs Co	ntrasts & F-t	ests				1				
Number o	of main EVs 2	-				1				
	of additional, v		dent EV/s	0 🛔		1				
Number o	7	overachen	uent L vo j	• ■		1				
Paste	Group	EV1	EV2			1				
		group A	group B			1				
Input 1	1 🚔	1 🚔	0 🚔			1				
Input 2	1 🗣 1 🗣 1 🗣	1 🛔	0 🚔			1				
Input 3	1 🚔	1	0 🚔			1				
Input 4		1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A 0 A	0 4 Y 0 4 Y 0 4 Y 0 4 Y 0 4 Y 0 4 Y 0 4 Y 0 4 Y 0 4 Y 0 4 Y 0 4 Y 1 4 Y							
Input 5	1 🌻	1	0 🍨			1				
Input 6	1	1	0			2				
Input 7	1	1	0 🚔			2				
Input 8	1	1	0			2				
Input 9	1 🛊 1 🌲	1	0			2				
Input 10	1	1	0			2				
Input 11	2		1			2				
Input 12	2	0 🛢	1			2				
Input 13	2	0	1			2				
Input 14	2 🛊 2 🌲		1							
Input 15 Input 16	2					2				
Input 17	2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4					2				
Input 18	2		1						A guo	group B
Input 19	2		1			C1	group A > group		1	-1
Input 20	2		1			C2	group B > group		-1	1
inpaceo	- •					C3	group A mean		1	0
	View desi	an Effi	ciency			C4	group B mean		0	1 -
						04	group b mean		0	-

can use the Glm tool (Glm_gui on mac) to create GLM design and contrast matrices

Dual regression outputs

- dr_stage1_subject[#SUB].txt the timeseries outputs of stage 1 of the dual-regression.
- dr_stage2_subject[#SUB].nii.gz the spatial maps outputs of stage 2 of the dual-regression.
- dr_stage2_ic[#ICA].nii.gz the re-organised parameter estimate images
- dr_stage3_ic[#ICA]_tstat[#CON].nii.gz the output from randomise

(corrected for multiple comparisons across voxels but not across #components!!)

Group template maps

- Generate from the data using ICA
 - use all data to get unbiased templates
 - use independent control group
 - will not model signals and artefacts
- use existing template

template RSNs

https://www.fmrib.ox.ac.uk/datasets/royalsoc8/

Summary of part 2

- MELODIC ICA is applied to resting state fMRI for two main purposes: artefact detection, resting state network characterisation
- Artefact detection is done using single subject ICA
 - Artefact components can be classified manually or using FIX/AROMA
 - We then use GLM to regress out the artefacts and clean up the fMRI
- RSN estimation is done using group-level ICA
 - We use concatenation technique
 - This will give consensus RSNs which we then project onto subject fMRI using dual regression
 - Subject specific RSNs obtained from dual regression can be used for statistical comparisons (and input to FSLNets -> we will learn about this tomorrow)

Resting state fMRI and ICA

Available from:

- Oxford University Press
- Amazon

Series editors: Mark Jenkinson and Michael Chappell

OXFORD